在国内的云服务器商家中,腾讯云是排名前列的云服务器提供商。而且腾讯是国内互联网龙头企业,信得过,它们的产品是值得信任的。现在教下新手怎样选择和购买腾讯云服务器。包含普通购买流程,通过价格计算器购买,以及在腾讯云最新活动页面购买三种流程。
前几篇已经实现了一个最简单的购买过程,这次开始往这个过程中增加一些东西。比如促销、会员价等,在我们的第一篇文章(如何一步一步用DDD设计一个电商网站(一)—— 先理解核心概念)中规划的上下文映射图可以看到,这些都属于一个独立的上下文(售价上下文)。
这里利用仿真算法结合消费者效用函数模型以及网络口碑的传播模型,进行整合构建出基于网络口碑的消费者线上线下双渠道购买迁徙行为的模型,描述市场中基于网络口碑的消费者双渠道购买迁徙行为和研究网络口碑的影响规则,结果如下图:
摘要:本文主要介绍阿里的深度兴趣网络DIN模型。为了解决推荐领域中用户历史行为包含大量用户兴趣信息,但只有一小部分用户兴趣信息会最终影响用户点击行为的问题,阿里引入Attention机制提升相关商品的权重同时降低非相关商品的权重,最终实现对用户历史行为进行加权的目的。同时讲了DIN模型中其他具有借鉴价值的工程实践,包括自适应正则Regularization、自适应激活函数Dice和评价指标使用GAUC替代AUC。
摘要:相比起“Hadoop、Spark”这种流行的大数据处理平台,说起“图计算”,可能许多人还比较陌生。“图计算”是以“图论”为基础的对现实世界的一种“图”结构的抽象表达,以及在这种数据结构上的计算模式。 一、何为“图计算” 相比起“Hadoop、Spark”这种流行的大数据处理平台,说起“图计算”,可能许多人还比较陌生。甚至有人会误把它当成专门进行“图像”处理的技术。 首先我们互联网上通常的定义来说明一下图计算: “图计算”是以“图论”为基础的对现实世界的一种“图”结构的抽象表达,以及在这种数据结构上的计
磁盘是用来存储程序数据的,存在没有放满的情况,即有空闲存储空间的情况,我们需要将这些空闲存储空间管理起来,以便某个程序需要运行时,给这个程序分配相应的空间。
最近邻分类是最简单的分类方法之一。当对给定项分类时,它会找到与这个项最相似的训练数据项,并输出其标签。下面的图给出了一个示例。
云服务器是一种简单高效、安全可靠、处理能力可弹性伸缩的计算服务。其管理方式比物理服务器更简单高效。用户无需提前购买硬件,即可迅速创建或释放任意多台云服务器。云服务器帮助您快速构建更稳定、安全的应用,降低开发运维的难度和整体IT成本,使您能够更专注于核心业务的创新。
总第103篇 前言 最近在做一个用户评分模型的项目,这个模型的目的就是用来判断用户的价值。希望通过各种指标来给用户综合打分,每个用户最后会得到一个分值,分值越高,说明用户的价值越高。这是一个总的目标,一个用户可以创造的价值由两部分决定:创造价值的能力和创造价值的意愿,前者是能不能的问题、后者是愿不愿意的问题。定了两个主线以后再次进行目标拆解,根据业务经验分别找到那些能够判断用户创造价值的能力和意愿的指标,然后给不同的指标赋予不同的权重/分值,最后将各指标的权重/分值相加就是用户最后的总得分。 上面的这个过
最近在做一个用户评分模型的项目,这个模型的目的就是用来判断用户的价值。希望通过各种指标来给用户综合打分,每个用户最后会得到一个分值,分值越高,说明用户的价值越高。这是一个总的目标,一个用户可以创造的价值由两部分决定:创造价值的能力和创造价值的意愿,前者是能不能的问题、后者是愿不愿意的问题。定了两个主线以后再次进行目标拆解,根据业务经验分别找到那些能够判断用户创造价值的能力和意愿的指标,然后给不同的指标赋予不同的权重/分值,最后将各指标的权重/分值相加就是用户最后的总得分。
朴素贝叶斯算法常用于分类与预测的问题,比如给一个1000本书进行分类,可以分为文学类,管理类,技术类,教育类等等,即算法得到的结果是一组离散的代表类别的数据。比如,预测一株很美的植物,在不同的地理环境,如吉林,北京,广州,深圳,大理,不同的地点,在不同的日照和阳光强度下,这株植物会生存下来吗?是的这是个概率问题。
王孝威:FinOps 认证从业者,热衷传播 FinOps 理论和实践知识,助力云上企业降本增效。 云计算时代已经到来 云计算时代真的到来了吗? 云计算(Cloud Computing),从 2006 年 AWS 第一次推出弹性计算云服务,已走过十五年风雨历程。早期被指责成“新瓶装旧酒” 的炒作,后来引发了人们对云上数据隐私的担忧,再到对公有云偶发事故的嘲笑,云计算的成长一直饱受骂名,但云计算市场现状究竟如何? 从中国市场主流软件来看 可能你已经注意到,在部分国民软件的启动页,会看到最下面有个标识:“某某云
使用RFM方法(最近购买日Recency, 各期购买频率Frequency, 各期平均单次购买金额Monetary)能够科学地预测老客户(有交易客户)今后的购买金额,再对销售毛利率、关系营销费用进行推算,就能按年、按季、按月分析出今后几期的客户价值。 在这里,客户价值指CRM毛利。CRM毛利 = 购买金额 – 产品成本 – 关系营销费用。 RFM方法是国际上最成熟、最为接受的客户价值分析方法,RFM实际上是一整套分析方法中的部分内容,但最具代表性,其它还包括客户购买行为随机模型、马可夫链状态移转矩阵方法、贝
近日,发表在《Scientifc Reports》上的一篇文章提出了一种基于脑机接口(BCI)的脑信号处理方法,该方法将重点放在了大脑前额叶皮层(PFC)的活动上,该区域负责监督人类的决策,并与冲动购买行为密切相关。PFC激活是通过使用功能性近红外光谱(fNIRS)记录信号来观察的,同时在虚拟计算环境中诱导冲动购买行为。
在互联网时代,推荐系统无处不在。不仅可以向用户推荐实体商品,还可以推荐电影、歌曲、新闻报道、酒店旅行等,为用户提供量身定制的选择。这些系统中有许多都涉及了协同过滤——根据其他相似用户的偏好向用户推荐 item。推荐系统的背后还用到了包括矩阵分解、邻域方法以及各种混合方法。
没有大量的数据,没有大量的人力就不能做好推荐么?当然不是,热传导/物质扩散推荐算法就是作为冷启动及小规模团队非常实用的推荐召回部分的算法。
我们知道之前的有分享过共享多端的1端如何进行筛选计算,这我们也可以用这种方式来计算新老客户。
想象一下,你在网上订购了一台咖啡机和一袋咖啡,咖啡机第二天到了,但咖啡在三天后才到。一次下单同时购买多个商品,最后却被拆分成多个订单包裹陆续收货,这样的情况不知道您是否遇见过。
会员价值度用来评估用户的价值情况,是区分会员价值的重要模型和参考依据,也是衡量不同营销效果的关键指标。
章翻译自: Which GPU(s) to Get for Deep Learning(http://t.cn/R6sZh27) 深度学习是一个计算需求强烈的领域,GPU的选择将从根本上决定你的深度学习研究过程体验。在没有GPU的情况下,等待一个实验完成往往需要很长时间,可能是运行一天,几天,几个月或更长的时间。因此,选择一个好的,合适的GPU,研究人员可以快速开始迭代深度学习网络,几个月的实验可以在几天之内跑完,几天的实验可以在几个小时之内跑完。因此,在购买GPU时,正确的选择至关重要。那么应该如何选择适
“探索推荐引擎内部的秘密”系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用。同时在理论讲解的基础上,还会结合 Apache Mahout 介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法。本文作为这个系列的第一篇文章,将深入介绍推荐引擎的工作原理,和其中涉及的各种推荐机制,以及它们各自的优缺点和适用场景,帮助用户清楚的了解和快速构建适合自己的推荐引擎。 信息发现 如今已经进入了一个数据爆炸的时代,随着 Web 2
我们历史上做过两个 RFM 分析的模型,没有任何问题,但那时的制作更多地在研究 DAX 实现的极致,而现在则完全不同,我们将回归简单,用最简单的方式来实现如何支持业务的效果。最典型的案例莫过于我们发布的【ABC动态分析精悍版】,只要两个度量值就完成动态ABC分析。在很多教程中,动态 ABC 分析是最后的压轴案例,但在这里ABC分析是最简单的模型。我们会陆续再释放几个经过极度简化的非常棒的模型。
比特币是什么? 比特币是一种开放的数字货币的p2p形式。这到底意味着什么呢?有了比特币,我们第一次拥有了“人民货币”,没有政府或中央人物控制诸如利率或通货膨胀之类的东西。比特币交易无法逆转,因此用户无
接着上一篇 精读《15 大 LOD 表达式 - 上》 ,这次继续总结 Top 15 LOD Expressions 这篇文章的 9~15 场景。
忠诚用户不仅能为网站创造持续的价值,同时也是网站品牌口碑推广的重要渠道,所以目前网站对忠诚用户愈加重视。可能很多网站或者网站分析工具对用户做了“新用户”和“回访用户”的划分,但是单单区分新老用户是不够了,我们需要更加完善的指标来衡量网站用户的忠诚度。 用户忠诚度(Loyalty),指的是用户出于对企业或品牌的偏好而经常性重复购买的程度。对于网站来说,用户忠诚度则是用户出于对网站的功能或偏好而经常访问该网站的行为。根据客户忠诚理论,忠诚度可以由以下4个指标来度量: 重复购买意向(Repurchase I
在电商领域,推荐的价值在于挖掘用户潜在购买需求,缩短用户到商品的距离,提升用户的购物体验。
在电商领域,推荐的价值在于挖掘用户潜在购买需求,缩短用户到商品的距离,提升用户的购物体验。 京东推荐的演进史是绚丽多彩的。京东的推荐起步于2012年,当时的推荐产品甚至是基于规则匹配做的。整个推荐产品线组合就像一个个松散的原始部落一样,部落与部落之前没有任何工程、算法的交集。2013年,国内大数据时代到来,一方面如果做的事情与大数据不沾边,都显得自己水平不够,另外一方面京东业务在这一年开始飞速发展,所以传统的方式已经跟不上业务的发展了,为此推荐团队专门设计了新的推荐系统。 随着业务的快速发展以及移动互联网的
作者:fisherman,时任推荐部门推荐系统负责人,负责推荐部门的架构设计及相关研发工作。Davidxiaozhi,时任推荐部门推荐系统架构师,负责推荐系统的架构设计和系统升级。 来自:《决战618:探秘京东技术取胜之道》 零,题记 在电商领域,推荐的价值在于挖掘用户潜在购买需求,缩短用户到商品的距离,提升用户的购物体验。 京东推荐的演进史是绚丽多彩的。京东的推荐起步于2012年,当时的推荐产品甚至是基于规则匹配做的。整个推荐产品线组合就像一个个松散的原始部落一样,部落与部落之前没有任何工程、算法的交集
常见的cohort展示方式有两种,一种是按照日期差呈现出左上角数据;一种是按照实际日期呈现出右上角数据
如果嫌麻烦,也可以直接跳到 RFM 4.0 的说明。如果说,RFM 4.0 的本文实现是自评 80 分,那么此前的 RFM 3.0 与之相比,大概只能是:30 分。RFM 4.0 的进步是全方位的,它不仅体现 PowerBI,DAX 的能力,体现业务逻辑,还体现了综合全部要素抽象简单统一的能力。
数据流图(DFD)提供了系统内信息流(即数据流)的可视化表示。通过创建一个数据流图,您可以告诉参与系统流程的人员所提供和交付的信息、完成流程所需的信息以及需要存储和访问的信息。数据流图在软件工程中得到了广泛的应用。您可以在信息系统建模中使用DFD。本文以客户服务系统为例,对数据流图(DFD)进行了描述和说明。
忠诚用户不仅能为网站创造持续的价值,同时也是网站品牌口碑推广的重要渠道,所以目前网站对忠诚用户愈加重视。可能很多网站或者网站分析工具对用户做了“新用户”和“回访用户”的划分,但是单单区分新老用户是不够了,我们需要更加完善的指标来衡量网站用户的忠诚度。 会员分层 方法一: 当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户。电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里面,所以对于这些用户,我们可以基于网站的运营数据
在实际业务中,商场物品的摆放是否对营销有所影响?所策划的营销活动是否真正的起到了促销价值?活动赠品的使用效果如何?购物篮分析是啥?
行为明细数据包含五个要素:WHO、WHEN、WHERE、HOW、WHAT,明细数据记录了用户在什么时间点通过哪个功能模块以何种方式操作了什么内容。行为明细数据大部分来自用户操作日志,经过大数据实时处理后存储到合适的数据存储引擎中,本节所有行为明细数据都存储到ClickHouse表中。
Hierarchical Clustering(层次聚类)是一种常用的无监督学习算法,用于将数据样本分成不同的类别或簇。该算法将数据样本看作是一个层次化的结构,在每个层次上不断合并最近的样本,直到所有样本都合并为一个簇或达到预设的聚类个数。Hierarchical Clustering算法不需要事先指定聚类个数,可以根据数据的结构自动划分成簇,因此被广泛应用于数据分析和模式识别领域。
《数分狗必知必会》系列是一个简单介绍数分之外的领域的知识的小科普的系列。目前财务篇、人力资源篇、法律篇已经完结,有兴趣的朋友们可以点击合集按钮查看之前的内容。
最近常常有小伙伴问我,大概是如下几个问题: 我手里没有多少数据可以供分析,怎么办?我手上有一些数据,但是不知道该如何分析,怎么办?我有一些数据,也知道该做哪些分析,但是不会高大上的工具,怎么办?
本文介绍了腾讯游戏社交算法团队研发的能够处理百亿级大规模图数据的分布式网络表征算法,及其在多个游戏业务场景落地应用,并且取得明显的实际业务效果提升。
客户放弃选择某个产品,并不表示客户离开这个品牌本身,因此,我们需要跟踪客户在品牌中的品类或者产品中的流动情况,如下:
去年,图嵌入在企业知识图谱(EKG)策略中变得越来越重要。图形嵌入将很快成为在大型十亿顶点EKG中快速找到相似项目的实际方法。实时相似性计算对于许多领域至关重要,例如推荐,最佳行动和队列构建。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
Statistics 和 Modeler作为 IBM SPSS 软件家族中重要的成员,是专业的科学统计、数据挖掘分析工具,其具有功能强大,应用广泛的特点。其核心组成部分——预测分析模型,不仅是软件功能实现的关键,同时也是软件应用的关键。 Statistics中的模型侧重于统计分析技术, 而Modeler则侧重于数据挖掘技术。它们都依据现有数据,运用某个或某几个特定的算法,来预测用户所关注信息的未来值。Statistics 和 Modeler提供众多的预测模型,这使得它们可以应用在
概述:在评测各个云厂商的云数据库的时候,我们经常被各种复杂的数据迷惑,不知道该怎么看数据库的性能,怎么评比价格,怎么选出性价比超高的产品,对于大部分没法试用(原因你知道的,费用太高)的产品,就只能听厂商宣传了,今天我们来一起探讨如何评选出一款性价比超高的云数据库。 PS: 目前主流的云数据库一般分两大类,一类是互联网公司常用的开源数据库MySQL,一类是Windows下标配的SQL Server,这两大类产品都拥有自己的客户群。本次评测也围绕这两类展开。 PPS: 本次参与评测的厂商有:AWS(国际),AW
如果我们要新购腾讯云服务器,个人觉得最合适的优惠活动就是腾讯云产品3折起特惠活动了,为什么呢?因为不仅价格低,而且购买简单,新老用户都可以购买。下面我们来说说腾讯云服务器优惠购买为什么要选择腾讯云3折特惠活动的理由:
领取专属 10元无门槛券
手把手带您无忧上云