本次分享的背景是,Datawhle联合天池发布的学习赛:零基础入门CV赛事之街景字符识别。本文以该比赛为例,对计算机视觉赛事中,赛事理解和Baseline两部分内容进行解析,帮助大家更好地学习实践。同时进行了直播分享(今晚7点在阿里天池直播分享,录播上传后原链接可回看):
Datawhale 零基础入门CV赛事-Task1 赛题理解 本章内容将会对街景字符识别赛题进行赛题背景讲解,对赛题数据的读取进行说明,并给出集中解题思路。
怎么算呢?趁着高数知识还没忘完,赶紧拿起纸演算起来。大部分人是这么做的。但是如果现在跟你说,可以用 AI 来做,你信吗?
在日常生活工作中,我们难免会遇到一些问题,比如图片上不合规的文字信息,却要一个一个地审核,很麻烦;快递公司的业务越来越好,但每天需要花费很多时间登记录入运单,效率非常的低。
让我们不妨先来盘点下从 2016 年起过去三年间 Google I/O 开发者大会亮相的重磅 AI 产品:
我们定义几个固定大小尺寸的窗口,从照片的左上角开始扫描。扫描出来的图像做二分类,判断是北京还是人物(文字)。然后根据图像处理的一些惯用手段做二值化、膨胀,使得文字区域连通。最终根据规则选择文本框就可以了,过滤那些规则不规整、宽度比高度小的矩形框框,剩下的就是目标文本框了。
评估OCR算法识别率的指标通常有这几种: one 全对准确率:每张图片版面上有多个文本时候,每个文本都对的张数占总的张数的比例; 标签全对准确率:每张图片版面上有多个文本时候,文本对的个数占总的文本个数的比例; 平均编辑距离:平均编辑距离越小说明识别率越高。平均编辑距离主要衡量整行或整篇文章的指标,可以同时反应识别错,漏识别和多识别的情况; 字符识别准确率,即识别对的字符数占总识别出来字符数的比例,可以反应识别错和多识别的情况,但无法反应漏识别的情况; 字符识别召回率,即识别对的字符数占实际字符数的比例,可
针对识别图片中的文本信息识别,分为文本区域检测,之后是将文本区域的字符分割,分割以后开始进行字符识别。
大数据文摘作品,转载要求见文末 作者 | Adrian Rosebrock 编译 | keiko、万如苑 这是一篇关于安装和使用Tesseract文字识别软件的系列文章。 所谓的光学字符识别是指把打印的手写的或者印刷图片中的的文本自动转化成计算机编码的文本由此我们就可以通过字符串变量控制和修改这些文本。 如果你想了解更多关于Tesseract库和如何使用Tesseract来实现光学字符识别请看本文。 安装OCR软件Tesseract 起初惠普公司在上世纪八十年代就开发了Tesseract,并在2005年公
一、准备工作与代码实例 1、PIL、pytesser、tesseract (1)安装PIL:下载地址:http://www.pythonware.com/products/pil/(CSDN下载) 下载后是一个exe,直接双击安装,它会自动安装到C:Python27Libsite-packages中去, (2)pytesser:下载地址:http://code.google.com/p/pytesser/,(CSDN下载) 下载解压后直接放C:Python27Libsite-packages(根据你安装的P
本公众号先后推出了由作者小猴锅倾力打造的Tensorflow2.0原创入门专栏以及上手实战专栏,均在发出后取得了不错的反响。
注:此篇内容主要是综合整理了光学字符识别 和OCR技术系列之一】字符识别技术总览,详情见文末参考文献
中山大学的一名叫mathAI的硕士学霸小哥在GitHub上开源了一个拍照做题神器火了。
作者介绍: 数据平台部OCR+团队负责人。2008年毕业于中国科学院研究生院,主攻模式识别、计算机视觉、图像处理、以及深度学习等方向。读研期间曾在模式识别顶级期刊PAMI(IEEE Transactions on Pattern Analysis and Machine Intelligence)发表指纹识别相关论文。此前在腾讯优图团队从事图像处理(人脸识别)相关工作,现在属于腾讯技术工程事业群\数据平台部\OCR+团队,主要从事文字识别、图像语义理解等相关工作。 引言 OCR技术,通俗来讲就是从图像中
EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、灵活、准确的车牌识别引擎。
文字是信息的重要载体之一。通过书写、印刷、电子设备等方式,文字可以被记录下来并传递给他人。文字也是语言的重要组成部分,人们可以通过文字来表达自己的思想、感情和意图。在信息化时代,文字仍然是最基本、最重要的信息传递方式之一,也有着其不可替代的优势,如:简短明了、方便快捷、易于编辑、可归纳整理等。
感谢Liuruoze的EasyPR开源车牌识别系统。 EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、灵活、准确的车牌识别引擎。 相比于其他的车牌识别系统,EasyPR有如下特点: 它基于openCV这个开源库,这意味着所有它的代码都可以轻易的获取。 它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。 它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。 跨平台 目前除了windows平台以外,还有以下其他平
开发具有一定价值的符号是人类特有的特征。对于人们来说识别这些符号和理解图片上的文字是非常正常的事情。与计算机那样去抓取文字不同,我们完全是基于视觉的本能去阅读它们。
验证码识别涉及很多方面的内容。入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足。
https://tianchi.aliyun.com/competition/entrance/531795/introduction(阿里天池-零基础入门CV赛事)
近日浏览网上一些图片提取文字的网站,觉得甚是有趣,花费半日也做了个在线图片识别程序,完成了两个技术方案的选择,一是tesseract+python flask的方案实现,二是tesseract+spring web的技术解决方案,并简作论述,与君共勉。
在我们进行自动化测试的过程中,免不了要在登录时遇到验证码,很多时候我们都是只能找开发要万能验证码或者暂时关闭验证码这个功能,但是有时候我们必须要验证码是否能够正常生成,所以在这个时候,我们需要做的就是输入验证码,但是验证码这个东西是随机生成的,不是每一次都一样,所以我们还是需要识别然后输入,脚本是没有眼睛的,只能通过代码来进行识别,所以本文就来给大家介绍一下如何使用Python来轻松识别数字验证码。
Tesseract是一个开源的ocr(光学字符识别,即将含有文字的图片转化为文本)引擎,可以开箱即用,项目最初由惠普实验室支持,1996年被移植到Windows上,1998年进行了C++化。在2005年Tesseract由惠普公司宣布开源。2006年到现在,都由Google公司开发。
哪里下载Mac电脑图片提取文字Text Scanner for Mac 完美兼容版安装包啊,Text Scanner for Mac是一款强大的文本识别工具,由iFotosoft公司开发。这个应用程序使用户能够在Mac上轻松地将纸质文件转换为文本文件,无论何时何地,都可以快速准确地识别和提取文本内容。
人工智能的飞速发展逐渐在取缔部分繁杂无用的工序,而移动端离线车牌识别也同样利用人工智能在结束代替人工手动录取车牌,深度学习算法的成果让工作生活更便捷。例如在传统的移动勘查中,工作人员遇到违规的车辆,都要站在路边一字一字、一辆一辆的去抄写车牌号码,虽然后来增加了移动设备,但是还是需要去手动录入车牌号码。如何利用一部手机搞定这个过程呢?
1. 引言 OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。 在Windows 10通用应用程序UWP示例中,包含了OCR应用程序,具体请参考(https:/
由于深度学习模型近期取得的进展,对于许多主流语言来说,手写字符识别已经是得到解决的问题了。但对于其它语言而言,由于缺乏足够大的、用来训练深度学习模型的标注数据集,这仍然是一个极具挑战性的问题。
车辆检测跟踪模块 车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置最佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。 车牌定位模块 车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统完全摒弃了以往的算法思路,实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。 车牌矫正及精
作者 | Fedor Borisyuk,Albert Gordo,Viswanath Sivakumar
随着计算机视觉在我们生活中的应用越来越广泛,大量的字符识别和提取应用逐渐变得越来越受欢迎,同时也便利了我们的生活。像我们生活中的凭借身份码取快递、超市扫码支付的机器等等。
文字,一种信息记录的图像符号,千年来承载了太多的人类文明印记。OCR,一种自动解读这种图像符号的技术,一直以来都备受关注。尤其在信息时代的今天,数字图像纷繁复杂,如何便捷高效的获取其中的文字信息,更有着重要的时代意义。作为模式识别领域最为经典的研究热点之一,OCR经历了长时间的发展变化,各种新技术、新方法、新应用层出不穷。 OCR技术的过去和现在: OCR(光学字符识别技术),是通过扫描仪或相机等光学输入设备获取纸张上的文字、图片信息,利用各种模式识别算法对文字的形态结构进行分析,形成相应的字符特征描述
Tess4J是对Tesseract OCR API的Java JNA 封装。tesseract是跨平台的OCR(Optical Character Recognition,光学字符识别)引擎,让开发者非常容易的集成OCR能力到他们自己的应用。通过强大的API从图片中识别和提取文本内容。Tess4J支持主流的图片格式,如TIFF,JPEG,GIF,PNG,BMP,and PDF。 OCR(Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。如何除错或利用辅助信息提高识别正确率,是OCR最重要的课题,ICR(Intelligent Character Recognition)的名词也因此而产生。衡量一个OCR系统性能好坏的主要指标有:拒识率、误识率、识别速度、用户界面的友好性,产品的稳定性,易用性及可行性等。
一个开源的中文车牌识别系统, Git地址为:https://github.com/liuruoze/EasyPR。 我给它取的名字为EasyPR,也就是Easy to do Plate Recognition的意思。我开发这套系统的主要原因是因为我希望能够锻炼我在这方面的能力,包括C++技术、计算机图形学、机器学习等。我把这个项目开源的主要目的是:1.它基于开源的代码诞生,理应回归开源;2.我希望有人能够一起协助强化这套系统,包括代码、训练数据等,能够让这套系统的准确性更高,鲁棒性更强等等。 相比于
OCR(optical character recognition)文字识别是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,然后用字符识别方法将形状翻译成计算机文字的过程;即,对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。如何除错或利用辅助信息提高识别正确率,是OCR最重要的课题。衡量一个OCR系统性能好坏的主要指标有:拒识率、误识率、识别速度、用户界面的友好性,产品的稳定性,易用性及可行性等。
车牌识别是一种图像处理技术,用于识别不同车辆。这项技术被广泛用于各种安全检测中。现在让我一起基于OpenCV编写Python代码来完成这一任务。
有小伙伴后台和小白说,能不能推荐几个适合入门的开源视觉项目,因为根据实际项目和代码学起来相对来说比较快。小白收集了一些比较简单的开源的项目,会陆陆续续的分享给大家,文末有源码地址。
OCR(Optical Character Recognition),译为光学字符识别,是指通过扫描等光学输入方式将各种票据、报刊、书籍、文稿及其它印刷品的文字转化为图像信息,再利用文字识别技术将图像信息转化为可以使用的计算机输入技术。
在多数组织的智能自动化流程业务中,OCR(光学字符识别)是目前应用最多的人工智能技术之一。OCR与RPA的结合可以将组织中超过70%的无纸化业务实现自动化,其效率将是人工的5倍以上。
OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。
本章将会讲解卷积神经网络(Convolutional Neural Network, CNN)的常见层,并从头搭建一个字符识别模型。
目前,我国警务通、停车场手持收费机等移动终端的使用比较普及,如果在这些终端上能够集成车牌识别功能,替代原来的手工记录,然后再人工录入电脑的步骤,让车牌的识别、记录工作变得快捷、便利、准确,会给业务人员带来很大的便利。现在出现一款基于Android、iOS平台的手机拍照车牌识别SDK,可方便的植入到警务通、手持收费机、掌上电脑、手机等手持终端上。
车牌识别系统可以自动检测并识别图像中的车辆牌照,其算法主要包括牌照定位、牌照分割、字符识别等步骤。本文将给出一种基于深度学习的车牌识别系统方案。
我们在日常工作过程中,经常会遇到文字识别的场景,一款好用的 OCR 工具也是非常重要的,能帮助我们极大的提高工作效率。
车牌识别,是人工智能以及 OCR 领域的重要应用场景。通过拍摄的包含车牌的照片,实现识别出车牌文字的功能,能够大大提高车辆识别效率,在交通违规检测、罪案侦查中能提供有力支持,而 EasyPR,能够快速准确地识别中文车牌。 ◆ 简介 EasyPR,是 liuruoze 在 Gitee 上开源的中文车牌识别系统,仓库位于 https://gitee.com/liuruoze/EasyPR,目前版本为 1.6。 EasyPR 的目标是成为一个简单、高效、准确的非限制场景 (unconstrained situa
“ 随着人工智能的高速发展,开发者们对于能够应对产品多样化挑战的学习框架TensorFlow,也有着很高的热情。除了各类科技产品,零售行业也同样将TensorFlow运用于大规模的深度学习中。 在这篇文章中,来自可口可乐公司数据侠Patrick Brandt,就将为我们介绍如何使用AI和TensorFlow实现无缝式购买凭证。 可口可乐的核心忠诚度计划于2006年以MyCokeRewards.com形式启动。 “MCR.com”平台包含为每一瓶以20盎司规格销售的可口可乐、雪碧、芬达和动乐产品,以及可以在杂
随着汽车的需求暴增,车辆管理成为了城市管理的重中之重。移动端车牌识别技术已被广泛应用于城市智能交通、智慧小区的系统中,以往是手动录入车牌信息或者是一笔一划抄写车牌信息,如此,会增加人为的误差,降低了工作效率,后来移动端车牌识别技术在车辆管理中被应用,车辆管理体验感得到了提升,如今更是完美的集成了移动端车牌识别算法,通过前端就能进行解帧识别车牌,无需有有一个图片传输返回结果的过程,直接就可以把车牌识别出来,这是高新技术的又一个台阶。
领取专属 10元无门槛券
手把手带您无忧上云