本文主要介绍了一种基于Java和C++混合编程的图像识别服务框架的设计与实现,该框架可以同时支持多种图像识别算法,并提供了灵活的配置方式和容错机制,可广泛应用于各类业务场景。
图像识别算法在企业文档管理软件里可谓是扮演了一位全能选手,让我们的文档处理变得轻松愉快,就像吃了一块巧克力一样。现在,让我们来看看图像识别算法在企业文档管理软件里的一些酷炫玩法:
伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹识别、医疗诊断等等领域中,发挥重要作用。
在电脑屏幕监控软件中,图像识别算法就像是一个电脑版的侦探,用着最先进的计算机视觉技术,自动监视和分析屏幕上的图像内容。图像识别算法可以轻松地识别出屏幕上的物体、文字、图案等等,不管它们是多么复杂或是隐蔽。无论你是在监控系统里还是在视频编辑软件中使用它,都会让你感觉到“嗯,这真的是太强大了!”下面就为大家简单的介绍一下图像识别算法在电脑屏幕监控软件中优势与实用性。
1 图像识别是什么? 2 图像识别的应用场景有哪些? 什么是图像识别 图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。根据观测到的图像,对其中的物体分辨其类别
导语:如果说算法和数据是跑车的发动机和汽油,那么系统则是变速箱,稳定而灵活的变速箱,是图像识别服务向前推进的基础。算法、数据、系统三位一体,随着算法的快速发展和数据的日益积累,系统也在高效而稳定地升级。 一、背景介绍 前面的系列文章分别介绍了算法和数据,如果说算法和数据是跑车的发动机和汽油,那么系统则是变速箱,稳定而灵活的变速箱,是图像识别服务向前推进的基础。算法、数据、系统三位一体,组合成完整的OCR在线服务。伴随着算法的升级和业务的持续接入,系统也经历了从单机版升级到分布式版本;从为了每个算法定制系统
本篇干货整理自清华大学自动化系教授张长水于2018年4月27日在清华大学数据科学研究院第二届“大数据在清华”高峰论坛主论坛所做的题为《机器学习和图像识别》的演讲。
银行卡扫描识别 Ctrip Tech 背景介绍: 图像识别是人工智能的一个重要领域 。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。图像识别经历了三个阶段的发展:文字识别,数字图像处理与识别,物体识别。文字识别的研究是从1950年开始的,一般是识别字母,数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。 随着智能手机兴起,手机支付的行为越来越普及。但是用户在手机上输入银行卡卡号时,速度很慢,需要仔细的校对,用户体验很差。美国的PAYPAL 、苹果公司,中国的阿里公司和腾讯都在
近期,2023年度视觉与学习青年学者研讨会 (Vision And Learning SEminar, VALSE) 在无锡圆满落幕,此研讨会是图像视觉领域的重磅会议。作为智能文档处理领域代表的合合信息自然不会缺席,合合信息出席会议并进行智能文档处理技术研发与实践成果分享,重点介绍了其在版面分析与文档还原技术实现上的新突破。
图像识别?的搜寻结果 百度百科 [最佳回答]图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。另外在地理学中指将遥感图像进行分类的技术... 机器学习算法与Python学习 9999……999条好评 图像识别(image recognition)是现在的热门技术。文字识别、车牌识别、人脸识别都是它的应用。但是,这些都算初级
图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人
如今,智慧办公是企业办公领域数字化转型的题中之义。作为国内最早开发的软件办公系统之一,金山办公如何应用深度学习实现复杂场景文档图像识别和技术理解?本文将从复杂场景文档的识别与转化、非文本元素检测与文字识别、文本识别中的技术难点等多个方面进行深度解析。 作者 | 金山办公CV技术团队 出品 | 新程序员 在办公场景中,文档类型图像被广泛使用,比如证件、发票、合同、保险单、扫描书籍、拍摄的表格等,这类图像包含了大量的纯文本信息,还包含有表格、图片、印章、手写、公式等复杂的版面布局和结构信息。早前这些信息均采用
最近,图像识别领域发布了白皮书,简单翻译一下做个总结。 ---- 目录 [1] Introduction 1.1 Exponential Growth of Image and Video 1.2 Statistics [2] Image Recognition [3] Recent Innovations 3.1 Approaches 3.2 Deep Neural Networks [4] Applications 4.1. Inform
谷歌2017开发者大会 Google I/O已经落幕,有不少亮点都值得我们学习和回顾,其中相当一部分是机器学习开发的内容。AI研习社精选了其中的精彩视频译制呈现给大家,该视频为中文字幕版首发! 来自谷歌TensorFlow技术推广部的Josh Gordon 带来了一场主题为《用于图像、语言和艺术的开源TensorFlow模型》(Open Source TensorFlow Models for images, language and art)的演讲,介绍了最新的从图像识别和语义理解的TensorFlow
移动互联网、智能手机以及社交网络的发展带来了海量图片信息,根据BI五月份的文章,Instagram每天图片上传量约为6000万张;今年2月份WhatsApp每天的图片发送量为5亿张;国内的微信朋友圈也是以图片分享为驱动。不受地域和语言限制的图片逐渐取代了繁琐而微妙的文字,成为了传词达意的主要媒介。图片成为互联网信息交流主要媒介的原因主要在于两点:
AI科技评论消息 根据MIT和Google研究人员近期发表的论文,他们正在训练AI将图像、声音和文字等多方面信息匹配起来。 在语音识别、图像识别以及下围棋等单项能力方面,AI已经足够出色,甚至超越了人类。但是如果AI一次只能使用一种感知能力,无法将看到和听到的内容进行匹配的话,就无法彻底理解周围的世界。这正是MIT和Google的研究人员进行这项研究原因。 研究人员并没有教给算法任何新东西,只是建立了一种方式让算法能够将多种感官获得的知识进行连接和协调。这一点至关重要。 论文的联合作者之一——MIT的A
图片中的文字无法识别怎么版?Text Scanner Mac版是一款强大好用的OCR文字识别工具,基于AI领先的深度学习算法,利用光学字符识别技术,将图片上的文字内容,直接转换为可编辑文本!
按要求转载自公众号联合时报(ID:lhsbwx) 中国科学院院士张钹对国内外人工智能产业发展现状,提出我国仅靠跟随性的应用深度学习发展人工智能,是无法引领这项技术实现革命性突破的。语音也在里面学,文
AI(Artificial Intelligence)正在不断的改变着各个行业的形态和人们的生活方式,图像识别、语音识别、自然语言理解等 AI 技术正在自动驾驶、智能机器人、人脸识别、智能助理等领域中
论文解读: Quantized Convolutional Neural Networks for Mobile Devices
文字识别、车牌识别、人脸识别都是它的应用。但是,这些都算初级应用,现在的技术已经发展到了这样一种地步:计算机可以识别出,这是一张狗的照片,那是一张猫的照片。
图像识别(image recognition)是现在的热门技术。 文字识别、车牌识别、人脸识别都是它的应用。但是,这些都算初级应用,现在的技术已经发展到了这样一种地步:计算机可以识别出,这是一张狗的照
Wikitude于近日发布了拥有全新3D SLAM引擎的增强现实SDK 6.0版。 Wikitude于近日发布了拥有全新3D SLAM引擎的增强现实SDK 6.0版。专为智能手机、平板电脑和智能眼镜设
背景 自动化测试从最早期的录制回放技术开始,逐步发展成DOM对象识别与分层自动化,以及基于POM(Page Object Model)来提高用例复用,到当前火热的基于AI技术的自动化,体现了自动化测试的发展趋势是更加智能,更加精准,更加高效。在这里我们给大家介绍两种在业界已经有广泛使用的智能自动化测试技术: 自愈(Self-Healing)技术 机器学习(Machine Learning)技术 自愈技术 1.1 什么是自愈技术 自愈(Self-Healing)技术在计算机术语中是指:一种自我修复的管理机制。
导读:本文主要介绍了机器视觉的主要应用场景,目前绝大部分数字信息都是以图片或视频的形式存在的,若要对这些信息进行有效分析利用,则要依赖于机器视觉技术的发展,虽然目前已有的技术已经能够解决很多问题,但离解决所有问题还很遥远,因此机器视觉的应用前景还是非常广阔的。
在人工智能产业中,应用层是一个极大的部分,是人工智能技术最终的目的地。除了机器人、无人机和无人驾驶等硬件产品之外,人工智能的软件应用在单独商业化的同时,也在为这些硬件产品提供服务,像智能家居的语音控制
利用计算机图像识别、地址库、合卷积神经网提升手写运单机器有效识别率和准确率,大幅度地减少人工输单的工作量和差错可能。
图像处理技术 是用计算机对图像信息进行处理的技术。主要包括图像数字化、图像增强和复原、图像数据编码、图像分割和图像识别等。
Dev Club 是一个交流移动开发技术,结交朋友,扩展人脉的社群,成员都是经过审核的移动开发工程师。每周都会举行嘉宾分享,话题讨论等活动。 本期,我们邀请了 腾讯 TEG 技术工程师“文亚飞”,为大家分享《深度学习在OCR中的应用》。 下面是分享实录整理: ---- 大家好,我是文亚飞,来自腾讯TEG,目前负责图像识别相关的工作。OCR(光学字符识别)旨在从图片中检测和识别文字信息,本次分享将介绍我们在OCR技术研发过程中的一些方法和经验总结。 一,OCR背景及基本框架介绍 OCR技术从上世纪60年代就开
本页面收集了大量深度学习项目图像处理领域的代码链接。包括图像识别,图像生成,看图说话等等方向的代码,以便大家查阅使用。 图像生成 绘画风格到图片的转换:Neural Style https://lin
OCR也叫做光学字符识别,是计算机视觉研究领域的分支之一。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。
GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,雷锋网将发布“人工智能&机器人Top25创新企业榜”榜单。目前,我们正在四处拜访人工智能、机器人领域的相关公司,从而筛选最终入选榜单的公司名单。如果你的公司也想加入我们的榜单之中,请联系:2020@leiphone.com 在让计算机理解世界上,或许理解了什么并不重要,重要的是理解的能力。于是图普科技想到让它理解“小黄图”。 图普是一家图像识别云服务公司,接入它的API,上传图片,服务器就能以一
文档比对技术是一种用于比较两份文档之间差异的先进技术。具备较大的技术难点和场景价值。下面将对其技术难点和使用场景进行详细探讨。
近来,很高兴能够参与到腾讯云AIoT应用创新大赛,有机会认识到各种行业背景的物联网爱好者;作为一个新手,接触了面向物联网领域的TencentOS Tiny系统、腾讯云物联网开发平台以及RISC-V芯片的应用实例等。
微博是很多人最常使用的社交平台。吐槽、追星、发自拍、看视频、开直播等,如今微博的内容和互动形式越来越多元化。由此累积下来的庞大数据和复杂的用户互动场景,也让人工智能在微博有了用武之地。微博团队是如何玩转人工智能的?如何对明星进行图像识别?近期的线上数据侠实验室中,DT君邀请了微博机器学习团队资深算法工程师杨士新,分享了微博在人工智能方面的典型应用。
嵌入式系统在现代科技中扮演着重要的角色,广泛应用于医疗设备、汽车、工业控制、智能家居等领域。嵌入式图像处理作为其中的一个关键组成部分,为许多应用提供了视觉感知能力。本文将介绍嵌入式图像处理的算法、应用以及性能优化方法,并提供相关的代码示例。
笔者最近一直在研究 前端可视化 和 搭建化 的技术, 最近也遇到一个非常有意思的课题, 就是基于设计稿自动提取图片信息, 来智能化出码. 当然本文并不会介绍很多晦涩难懂的技术概念, 我会从几个实际应用场景出发, 介绍如何通过canvas图像识取技术来实现一些有意思的功能. 最后会总结一些对智能化的思考以及对低代码方向的规划, 希望能对各位有所启发.
【新智元导读】苹果公司 AI 研究主管 Russ Salakhutdinov 近日在 NIPS 2016 的一次闭门分享会上畅谈了苹果的 AI 研究现状。从其流出的几张幻灯片可以看出苹果的确做了不少研究,尤其在压缩神经网络和图像识别算法方面独有一套。期待苹果发表第一篇机器学习论文! 苹果公司长期以来一直对其在加州库比蒂诺的实验室进行的研究保持神秘。原因很好理解。但至少在人工智能领域,苹果显示出要开始揭开其研究的神秘面纱的迹象。12月6日,在 NIPS 会议的一场闭门午餐会上,苹果公司机器学习团队的新主管 R
本文介绍了如何通过光学字符识别(OCR)技术来识别收据中的文本内容,并探讨了在识别过程中可能遇到的文本噪声问题,以及如何解决这些问题。同时,文章还介绍了如何使用CNN和LSTM等深度学习技术来提高文本识别的准确率。
光学字符识别技术(OCR)目前被广泛利用在手写识别、打印识别及文本图像识别等相关领域。小到文档识别、银行卡身份证识别,大到广告、海报。因为OCR技术的发明,极大简化了我们处理数据的方式。
图像识别 视频要点: 通常,计算机使用被称为算法的一系列精确的指令进行编程。算法是一个简单的指令序列。 但怎样可以写一个算法来识别图像呢?例如区分一张图是汽车还是狗。实际上连仅表达出车与狗的差异都很困难。 我们在做的一件事便是,事实上人类已经做了数个世纪的,将需要识别的图像与一系列已经记住的模版做比较。 问题是这样做并不够好,因为这个工作过程中我们将需要海量的模版。我们需要各种可能位置、颜色、姿势的狗的图片,对汽车也是如此。所以这一方法在实践中并不太可行。这便是机器学习方法需要被使用的地方了。 我们所做的不
Felix,携程高级测试经理,关注无线测试、DevOps、测试框架方面的技术和动态。
SysML简介:SysML,全名为 System and Machine Learning,其目标群体是计算机系统和机器学习的交叉研究。会议由斯坦福大学的研究人员牵头,致力于发展这两方面领域的新的交集,包括机器学习在计算机系统应用上的实践方法和设计概念,以及与实践相结合的新的机器学习方法和理论。
EasyDL作为一款图像和声音的定制训练和服务平台,只要根据页面文字提示进行简单的拖拽操作,最快10分钟即可训练出定制化的深度学习模型。
本文共9876字,阅读约需14分钟,有兴趣的朋友请耐心阅读,谢谢! 近期许良在公司内部做了一个关于人工智能/深度学习相关的主题分享讲座,为了准备这个演讲,花了100个小时左右,接下来就把精心准备的内容分享给大家。 有一个好消息是,考虑文章比较长和文字本身表达的局限性,同时为了解答大家的疑问,近期会完全免费开一个视频直播,具体内容如下。 1. 深度学习入门到晋级 2. 深度学习模型解析和代码实现展示 3. 答疑环节 具体直播时间和链接获取方法最后和大家说。 ---- 内容正式开始。 一提到人工智能和深度学
上次我们说到了路易斯·冯·安(Luis von Ahn)发明的,既能拦截网络垃圾 spam、又能顺便帮助进行古籍的数字化工作的验证码工具--reCAPTCHA。今天继续这个话题的后续故事。 reCAPTCHA 在 2009 年被 Google 收购。在其作为验证码本职工作之外,承担了数字化 Google Books 和 Google 新闻档案计划的部分任务。到了近两年,有很多使用 reCAPTCHA 服务的网站上,验证码的内容发生了变化:一半仍然是扭曲的单词,而另一半则是一张带有数字的照片。这其实是 Goo
领取专属 10元无门槛券
手把手带您无忧上云