12月15日,由腾讯云主办的首届“腾讯云+社区开发者大会”在北京举行。本届大会以“新趋势•新技术•新应用”为主题,汇聚了超40位技术专家,共同探索人工智能、大数据、物联网、小程序、运维开发等热门技术的最新发展成果,吸引超过1000名开发者的参与。以下是大数据AI分会场的演讲内容,稍作整理,分享给大家。
最近接触到的一个开发项目,该项目的业务比较复杂,角色众多,关联系统也多,数据安全要求高,甲方希望系统是面向未来五到十年,数据分析要足够高效。
对于没有任何编程基础的人来说,选择学习Python是不错的选择,一方面Python语言本身的语法结构比较容易掌握,另一方面Python的实验也比较好做,这会增强初学者的学习成就感,从而能够走得更远。另外,Python语言是全场景编程语言之一,在Web开发、大数据开发、嵌入式开发和人工智能开发等领域都有比较广泛的应用,所以掌握Python语言未来会有比较广阔的应用空间。
机器之心报道 机器之心编辑部 3 月 23 日,在机器之心 AI 科技年会上,蚂蚁集团金融机器智能部总经理周俊发表了主题演讲《可信 AI 在数字经济中的实践与探索》。 周俊介绍,如果将数字经济比作一棵树,树干中的人工智能 (AI)、大数据、云计算等技术,构成了数字经济的核心,起着承上启下的作用;树根中的隐私、安全等因素,决定长势以及未来;树干跟树根必须紧密融合,才能枝繁叶茂,其中 AI + 隐私、AI + 安全等成为当下亟需突破的方向。而可信 AI 技术理念将是数字时代抵御风险、提升科技包容度的关键能力之
导读:自动化是嵌入到整个智能供应链Y的基因里去的,我们服务的一个愿景是希望通过自动化技术实现供应链全链条的降本提效。本文将分享京东如何利用AI驱动端到端补货建设,包括以下几大方面内容:
首先服务提供者(用户、商品等微服务子模块)按照指定格式的服务接口描述,向注册中心注册服务,声明自己能够提供哪些服务以及服务的地址是什么,完成服务发布。
AI科技评论按:中国人工智能学会AIDL第二期【人工智能前沿讲习班】日前在北京中科院自动化所举行,本期讲习班的主题为【机器学习前沿】。北京大学教授王立威带来了题为《机器学习理论:回顾与展望》的主题报告,主要对机器学习中关于泛化能力的几个重要理论进行介绍。 北京大学教授王立威博士的主要研究领域集中于机器学习,在包括COLT, NIPS,JMLR, PAMI等权威会议期刊发表论文60余篇。2010年入选AI’s 10 to Watch,是首位获得该奖项的亚洲学者。2012年获得首届国家自然科学基金优秀青年基金,
新一代人工智能重大科技项目,聚焦基础理论和关键共性技术的前瞻布局,包括研究大数据智能、跨媒体感知计算、混合增强智能、群体智能、自主协同控制与决策等理论,研究知识计算引擎与知识服务技术、跨媒体分析推理技术、群体智能关键技术、混合增强智能新架构与新技术、自主无人控制技术等,开源共享人工智能基础理论和共性技术。”随着人工智能的发展,越来越多的机器学习应用场景的出现,现有表现比较好的监督学习需要大量的标注数据,标注数据是一项枯燥无味且花费巨大的任务,所以迁移学习受到越来越多的关注。迁移学习专注于存储已有问题的解决模型,并将其利用在其他不同但相关问题上。比如说,用来辨识汽车的知识(或者是模型)也可以被用来提升识别卡车的能力。
因为疫情原因,所以有了更多时间去学习,就打算学学全栈开发,做一个自己的网站,现在网站开发已过半,写些文章记录一下自己的开发历程,也希望能给读者带来些帮助。
弱人工智能近几年取得了重大突破,悄然间,已经成为每个人生活中必不可少的一部分。以我们的智能手机为例,看看到底温藏着多少人工智能的神奇魔术。
获客难是如今To B企业的一大难题,探迹科技的数据统计印证了此点:对于销售总监来讲如何有效增加并优化销售线索是他们面临的最大难题和痛点。
随着人工智能的热度上升,图像识别这一细分领域也渐渐被人们所关注。在很多公司的业务中,有很多需要对图片进行识别的需求。为了帮助业务实现对这些图片、文档的识别和结构化,业界进行了一系列的实践和探索,最终确定了一些可行的方法。实践过程中,可能遇到过一系列问题和难点。本次直播分享,我们将结合目前的业务需求,说说爱奇艺在探索中遇到的痛点和难点以及识别技术中的一些细节。
人工智能在最近几年很火,那人工智能到底能做些什么呢?教育又将会迎来怎样的变革呢?以下是科大讯飞研究院北京分院副院长付瑞吉的思考。 《科学》杂志预测,到2045年,人类工作的50%将会被AI所取代。因为中国有很多劳动密集型企业,所以中国77%的工作将会被AI取代。可以想象一下,到那个时候,我们去银行办理业务,柜台里做的都是机器人;去餐厅吃饭,都是机器人为我们服务。 那么AI在教育领域里都能做些什么呢? 我们每年的英语听说考试会有大概 3000万分钟的录音,如果全部由人工评分的话,工作量是非常巨大
看到身边的人,随便画个鬼画符都是 SSR,而自己沐浴焚香,心里默念网易爸爸好,对着符文画出来的却只是一堆垃圾。
12 月 3 日、4日,2022 Apache IoTDB 物联网生态大会在线上圆满落幕。大会上发布 Apache IoTDB 的分布式 1.0 版本,并分享 Apache IoTDB 实现的数据管理技术与物联网场景实践案例,深入探讨了 Apache IoTDB 与物联网企业如何共建活跃生态,企业如何与开源社区紧密配合,实现共赢。
大家好,首先非常荣幸有机会收到LiveVideoStack邀请来和大家分享腾讯视频云在AI视觉上的落地实践与应用,以及AI视觉泛化应用过程遇到的机遇和挑战。
正文字数:4204 阅读时长:6分钟 AI就像一个加速器,正在渗透在多媒体应用的方方面面,改进甚至颠覆传统的图像视频处理方法。本文整理自腾讯云高级研发工程师刘兆瑞在LiveVideoStackCon 2020北京站上的演讲,将从超低码率压缩场景下AI技术在前置处理中的优化、AI技术的画质修复探索以及智能编辑场景的落地实践三个方面展开。 文 / 刘兆瑞 整理 / LiveVideoStack 大家好,首先非常荣幸有机会收到LiveVideoStack邀请来和大家分享腾讯视频云在AI视觉上的落地实践与
让我们回到之前关于猫咪图片的例子: 你开发了一个移动APP, 用户可以上传许多不同的图片到你的APP上,你想识别出用户上传的图片中所有包含猫咪的图片。 你的团队下载了很多图片数据集,包含猫咪图片(正
让我们回到之前关于猫咪图片的例子: 你开发了一个移动APP, 用户可以上传许多不同的图片到你的APP上,你想识别出用户上传的图片中所有包含猫咪的图片。 你的团队下载了很多图片数据集,包含猫咪图片(正样本,positive example)和非猫咪图片(负样本, negative example)。他们将这些数据划分为70%的训练集,30%的测试集。当使用这些进行算法训练时,效果非常不错。 但是将算法(分类器)部署到APP的时候,发现效果却非常的糟糕!
一、 前言 这是之前一次线上活动的待分享内容,因为一些原因,没有成行。在此开放出来,算是对之前关心和关注朋友的一次补偿。这部分内容同时也是系列课程《知识图谱实战开发案例剖析》的学习导论。相关课程已经开放在网易云课堂,关注的朋友可以前往查看。 1.1 概述 任何一项新技术的学习,都需要学习者基于自身的情况,结合被学习内容的特点进行展开,其过程既具有特殊性,同时也具有一般性,知识图谱的学习同样如此。基于胖子哥自身的切身实践,总结出了一套系统的学习知识图谱的方法,在此分享给大家。其要点可以用简单的用两句话来概况: 1. 横向覆盖:了解知识图谱所涉及的内容有哪些,并具备初步的认知能力,实现这一步,就可以对知识图谱的全局有一个系统的把握。 2. 纵向深耕:基于特定技术点进行深度学习,重点攻关、学深、学透。 以上两个点其实也是学习的两个过程,可以交叉进行,反复迭代。 1.2 人工智能的系统架构 知识图谱是人工智能进步的阶梯,开始知识图谱的学习之前,我们需要先了解一下人工智能相关的知识。人工智能从业务视角可以分为感知能力、认知能力和服务能力三个层次,其中认知能力以语义理解和语言生成为核心。如下图所示:
4月14日晚,由腾讯研究院、TechWeb联合举办的第十期“互联网前沿沙龙”如期举行。海尔北京创新中心产品运营总监邓凯、深圳市贝美互动科技有限公司创始合伙人宋英源、京东智能战略部负责人刘玮玮、猎豹移动投资总监范路就“互联网+硬件”话题进行了深入探讨。 刘玮玮 京东智能战略部负责人 (专注京东智能集团业务规划、战略执行、行业分析,协助制定公司战略,以及战略落地。先后在三星电子,中兴通讯做硬件开发,软件开发,项目管理,研发体系建设。) 京东在2014年上半年慢慢进入智能硬件
每天给你送来NLP技术干货! ---- 研究方向 人机交互(多模态)、定位定向(CV) 合作单位 天津(滨海)人工智能军民融合创新中心。 这个地方,研究方向比较好,支持各种研究,发论文指导有内部指导,也有外部合作。 招生学校 中山大学、北京大学和电子科技大学各有若干联合培养的学术型博士名额。 今年的招生简章还没出来,但是消息已经放出来了,基本要求不会有啥变化,具体可以参考去年的招生简章: 中山大学系统科学与工程学院2022年以“申请-考核”制招收博士研究生 北京大学工学院2022年“申请-考核制”博士研
现在的人工智能完全由数据来驱动,我们所见到的数据,比方说一张图片有三个通道,分为R(红)、G(绿)、B(蓝),每个通道是一个图层,相当于有三张图层,比如每一张图片是50*50像素,50*50*3就是整个数据的大小。这种数据在人工智能使用时,会被变成一个矩阵,相当于有一个50行50列高度3的矩阵,矩阵里面每一个小单元是一个数字,这个数字就是像素。从0到255反映颜色的色阶从少到多,三通道反映了点的颜色从而绘制了整个画面,这样的数据我们把它叫做原数据,把原数据送进我们的人工智能系统,学习完特征后,把结果读出来,“结果”其实是一个概率。
华夏电通副总裁谢泳江:智慧法院建设思路和应用
顾仁民,谷歌资深工程师,目前负责谷歌机器学习技术在国内的技术推广与企业合作。曾任谷歌展示广告系统研发团队主管,支撑国外若干大型网站的广告系统营收。
记者 | 张明明 2017年12月16日,由IBM与CSDN共同举办的第四季 "Power AI 人工智能马拉松编程大赛"在北京马哥孛罗酒店开幕。此次赛季围绕人工智能在医疗的应用展开。 本次大赛选手总共分为20组,每组选手3~6人不等。从报名情况来看,选手阵容非常豪华,来自北大、清华、中科院、北邮、北师大、北航、腾讯、微软亚洲研究院、搜狗、今日头条等知名院校及科技公司的选手比比皆是。 大赛从上午9:00正式开始,选手需要通过利用半监督的训练方法从有标注和无标注的图像数据中训练出一个模型,并且模型要能够
人工智能+新零售=?阿里巴巴iDST(数据科学与技术研究院)首席科学家兼副院长、原亚马逊无人零售项目Amazon Go的重要策划者任小枫,结合计算机识别技术的进展,讲述了他在新零售的各种应用场景中,对增强现实、智慧门店、机器人和可穿戴设备这几大方向的展望,本文为他在云栖大会的演讲实录。
去年 ChatGPT 爆火后,国内迅速迎来了“百模大战”。其中,复旦大学自然语言处理实验室在去年 2 月率先发布了国内首个类 ChatGPT 的对话式大语言模型 MOSS,开放不到 24 个小时,由于瞬时访问压力过大,MOSS 服务器显示流量过载而无法访问。
本次报告的主题是情感文本生成,先从自然语言生成技术的应用与需求开始讲起,引出情感表达型文本生成问题,从评论生成、情感对话、反讽生成、情感转换以及多模态情感生成这几个方面介绍了目前情感文本生成的研究进展。
研究比原链已经一年了,用比原链做了几个dapp,而且最近还做了一个基于他们插件钱包的dapp,总结了一些遇到的坑,还有一些技术细节,接下来我会分成三章,从dapp设计架构上,到深入到源码分析去帮各位介绍一下比原链的dapp,还有分析比原官方最近发布的dapp的架构。
商业是一个价值交换的事情,并不是一个等价交换的事情,我们因为信息不对称,很有可能导致一些效应:赢者通吃。大家买一个什么东西,可能比较关注的是市场知名度比较高的,这种会导致有一些同样的质量,甚至质量更高更便宜的产品,他们曝光度没有那么高,他们销售的时候并不占优势。我们作为一个数据团队,希望基于通信技术,大数据技术提供数字化智能化的服务,提升我们营销的价值点。
本文内容选自清华大学建筑学院研究员、博士生导师龙瀛老师于2019年10月11日在清华大数据“应用·创新”系列讲座上所做的题为《面向智慧城市的人本尺度城市形态:理论、方法与实践》的演讲。
众所周知,单体应用程序,由于其种种不足,几乎不支持敏捷方法。如果你想为一个大型或复杂的业务创建一个软件项目,最好从微服务架构开始。
大数据这个词,现在非常流行,估计大家都听过。如果你没有听过这个词,上街都不好意思跟别人打招呼。很多人觉得大数据离自己很远,觉得那是技术人员玩的东西。其实,我们生活中有使用的很多互联网产品都跟大数据有关。大数据对普通老百姓的作用,可以从以下三个方面来说一下:
机器之心报道 机器之心编辑部 在 WAIC 2021 AI 开发者论坛上,思谋科技联合创始人兼技术负责人刘枢带来题为《智能制造中的算法平台》的精彩分享。在演讲中,他主要介绍了在制造业中,什么样的算法平台能为客户与自己降本增效。 以下为刘枢在 WAIC 2021 AI 开发者论坛上的演讲内容,机器之心进行了不改变原意的编辑、整理。 今天非常高兴有机会在这个地方分享我们的思考,也让大家看一下我们怎么从深度学习前边走到后边,来到了这个后深度学习的 AI 时代。我相信,很多 ToB 公司初心为客户降本增效,其实作
本次报告涉及虚拟人多模态合成技术的进展,主要对研发的DurIAN模型中的一些关键问题进行了解析,最后对虚拟人技术的应用前景进行了展望。
Python 是一种开源编程语言,用于 Web 编程、数据科学、人工智能和许多科学应用。学习 Python 使程序员能够专注于解决问题,而不是专注于语法,其丰富的库赋予它完成伟大任务所需的力量。
微软亚洲研究院副院长周明老师报告:From Language Intelligence to Code Intelligence Based on Pre-trained Models
大家早上好,我今天给大家分享我们的基础软件建设。网易杭州研究院在整个网易集团的主要职责是为网易的非游戏业务构建统一的技术平台,来支撑网易音乐、网易新闻、严选,以及之前的考拉海购的业务需求。在 2019 年的时候,我们把考拉海购出售给阿里集团了,但是在之前,考拉也曾经一度是我们最大的一个支撑对象。所以对我们来讲,重点就是要去探索一个比较统一的、开放的、自主可控的技术架构,来满足我们的业务需求。
Fitness calculation →Reproduction→Mutation→Fitness calculation 达尔文的进化论讲的是什么?在一个自然存在的生物种群中,生物生存的自然环境会对生物进行选择,在选择上存下来的个体有更大的机会去将自己的基因传递给下一代,传递过程中会发生基因的变异(mulate)和杂交(crossover)来保证基因在传递过程中的多样性和稳定性。
“想要发一篇论文,怎么就那么难?” 无论几岁的计算机视觉党,面对这样的灵魂拷问,很有可能都要陷入沉思。 0-1岁的科研人要考虑的是, 谁来告诉我,哪个研究方向比较好,比较热门,比较不卷,比较好发论文。 2岁以上的科研人已然入坑,一时半会也爬不出来, 所以想着,求大神指导,怎么“抢idea”、怎么占坑、怎么快速发论文…… 大多数CV研究生的最终目的地无非两个,工程上的或者学术上的。要么进大厂当算法工程师;要么成为Lab算法研究员。 而要到达理想目的地的前提条件是,有一份拿得出手的成绩——发论文的数量和质量无
封面由ARKie智能设计赞助 早在去年 mixlab 的一篇案例报告里,就介绍过 Brandmark 了,当时 Brandmark 还是 v1 的版本,现在已经是 v2 版本了,也上线了一些子产品,例如 Brand Rank 、 Logo Crunch 。 Brandmark 在官方博客里介绍了关于人工智能做 Logo 设计的思考,核心的内容,我梳理了下: 使用类似于字体向量( https://github.com/Jack000/fontjoy )来发现字体之间的关系, Brandmark 希望将
亚马逊无人仓和KIVA搬运自动机器人的出现掀起了仓库AGV调度研究及应用的热潮。先进的搬运机器人智能调度算法是无人仓系统高效落地应用的关键,市场需求极大。本文作者基于多年的专业研究提供了仓库搬运机器人调度优化与仿真的相关建议以供行业参考。
近期,在智源研究院成立两周年之际举办的“智源论坛2020”中,北京大学教授、智源学者林伟提出这样一个问题:人工智能到底能不能够激发新数学的发展?对这一问题,他给出“人工智能的十种新数学”的回答。
作者 何从庆 授权自 AI算法之心 近些天在微信群里经常看小伙伴问到“机器学习如何入门,看哪些资料 ?”,于是乎想根据笔者学习两年多的学习经验,介绍下机器学习如何入门,该看哪些资料?下面我将从以下几个
来源商业新知,原标题:机器学习入门方法和资料合集 | 资源 近些天经常有小伙伴问到“机器学习如何入门,看哪些资料 ?”,于是乎想根据笔者学习两年多的学习经验,介绍下机器学习如何入门,该看哪些资料?下面
领取专属 10元无门槛券
手把手带您无忧上云