雍正大人下旨:每个月数次,爱可生开源社区以抽奖或者其他活动方式送出精心挑选的图书,以此来回馈一直支持我们的小伙伴们;
一,分布式事务简介 在当前互联网,大数据和人工智能的热潮中,传统企业也受到这一潮流的冲击,纷纷响应国家“互联网+”的战略号召,企业开始将越来越多的应用从公司内网迁移到云端和移动端,或者将之前孤立的IT系统联网整合,或者将原来厚重的企业应用拆分重组,独立成一个个轻量级的应用对外提供服务,这对传统的业务处理的数据一致性,带来了严重的挑战,我们已经身处一个分布式的计算环境,分布式事务的需求越来越普遍。 举一个例子,某行业电商网站经过几年的发展,业务数据累积越来越多,查询越来越慢。经过内部评审分析,认为系统的瓶颈就
学习分布式事务(一)
分布式事务管理是指在分布式系统中对跨多个数据库或服务的操作进行协调和保证一致性的机制。在分布式环境下,由于涉及到多个独立的资源和服务,需要确保这些操作要么全部成功执行,要么全部回滚,以保持数据的一致性。
今日头条丨一点资讯丨腾讯丨搜狐丨网易丨凤凰丨阿里UC大鱼丨新浪微博丨新浪看点丨百度百家丨博客中国丨趣头条丨腾讯云·云+社区
Hmily-TCC分布式事务解决方案是支持跨语言的场景的。其实现方式是使用了RPC(Remote Procedure Call,远程过程调用)来实现跨语言的通信。
原文链接:https://cloud.tencent.com/developer/article/2431681
假设现在有一个电商系统,里面有一个支付订单的场景,那对一个订单支付之后,我们需要做下面的步骤
传统事务是使用数据库自身的事务属性(ACID),而数据库自身的事务属性是局限于当前实例,不能实现跨库。而对于大型分布式/微服务集群系统中,不仅存在着跨库的事务,还存在很多不同系统/服务之间的RPC调用,这种调用往往也需要保证业务以及数据的一致性。因此,有必要使用一种分布式事务框架来协调整个端到端业务调用链路的应用和数据库来保证业务最终的数据一致性,而目前在分布式事务中用的比较多的即为基于所有服务参与者投票的二阶段协议(2PC)。
分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上,以上是百度百科的解释。
MQ和分布式事务 MQ 项目中RabbitMQ实现了at least once,包括mq反馈provider,消息持久化,consumer主动反馈mq.线程池消费防止消息积压等 mq 通知时,消费者没消费到怎么办 简单聊聊消息中间件? 你了解那些具体的消息中间件产品? mq的消费端是怎么处理的?整理一下你的消费端的整个处理逻辑流程,然后说说你的ack是在哪里返回的。按照你这样画的话,如果数据库突然宕机,你的消息该怎么确认已经接收?那如果发送端的服务是多台部署呢?你保存消息的时候数据库就一直报唯一性的错误?
.NET5、容器化、K8S、分布式、微服务、DevOps、云原生,热门的技术名词很多,然而无论概念如何包装,落地的底层逻辑是不变的,分布式事务就是一个钉子户,任何分布式架构都避不开,又很难搞定,尤其在.NET Core下,几乎还没有成熟的解决方案。这里来为大家捋一捋分布式事务,尤其是在.NET Core下推荐落地方案。
事务的原子性、持久性可确保在一个事务内,更新多条数据都成功/失败。在一个系统内部,我们可以使用数据库事务来保证数据一致性。那如果一笔交易,涉及到跨多个系统、多个数据库的时候,用单一的数据库事务就没办法解决了。
Seata(Simple Extensible Autonomous Transaction Architecture)是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。在 GitHub 上拥有超过 1.4 万 Star,毫无疑问是开源社区分布式事务领域最火爆的项目。
我们先看一下分布式事务的需求是如何产生的,以及应用服务器是如何支持分布式事务管理的。
事务可以看做是多个动作的集合,它由不同的小步骤组成,这些步骤要么全部成功,要么步骤失败;
随着互联网的快速发展,分布式系统已经成为了大型应用的标配。在分布式系统中,分布式事务和分布式锁是两个核心概念。本文将重点探讨分布式事务与分布式锁的区别,并提供相关的代码示例。
分布式事务,一直是实现分布式系统过程中最大的挑战。在只有单个数据源的单服务系统当中,只要这个数据源支持事务,例如大部分关系型数据库,和一些MQ服务,如activeMQ等,我们就可以很容易的实现事务。
的确,分布式事务的落地实践相对比较复杂,和数据库分库分表一样,很多公司采取的策略都是能不碰就不碰,因为在业务规模不庞大时,设计分布式事务要投入的精力,可能比采取人工补偿多得多。
在实际开发过程中,往往会遇到微服务架构中(数据分区存储),用户的一个操作,会设计到多个模块的数据落地或者更新查找,并且每个模块数据都是存储在不同的数据库,并且业务要求还需要确保操作结果的一致性。比如,用户在下单时:首选需要落地订单数据,其次,需要落地:账单数据、日志数据、或者库存更新等等操作。首先我们想到的解决方式就是事务来实现,由于在不同库,所以需要涉及到分布式事务。
事务是保证一系列操作是一个整体,要么都执行,要么都不执行。比如A给B转账,A扣钱了,B的账户的钱也要加上去,不能出现A扣钱B不加钱,或者B加钱A不扣钱的情况。在单体程序中,数据库和spring框架已经解决这个这个问题,我只要在需要事务的方法上加上@Translate,或者在Spring配置中某一层甚至全局事务。对于我这种CRUD程序员,最初的2年一直在写代码,居然还不知道事务是什么东西,这说明在单体程序开发中,事务已经被处理的很好了,和我们程序员关系不大,第二也说明不要一直写CRUD的代码,那是在浪费生命。
重要的组件包括事务管理器、XA资源管理器和事务参与者。事务管理器负责全局事务的管理和协调,XA资源管理器负责本地资源的管理和协调,事务参与者负责具体的事务操作。事务协调器作为桥梁,协调各个组件之间的交互,确保分布式数据一致性。
作者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
今天,咱们就暂时不聊【精通高并发系列】了,今天插播一下分布式事务,为啥?因为冰河联合猫大人共同创作的分布式事务领域的开山之作——《深入理解分布式事务:原理与实战》一书正式出版了,于2021年10月20日开始在当当预售,当天即登上当当新书榜第一的位置!
随着微服务的普及,分布式事务成为了系统设计中不得不面对的一个问题,而分布式事务的实现则十分复杂。本文汇总整理了分布式事务现有的七种实现方案,分别对每种方案的核心原理、对事务ACID特性的支持及其适用场景等进行了对比分析和总结,个人愚见,不吝赐教。阅读本文之前,需要你对数据库事务的ACID、CAP理论、Base理论以及两阶段提交有一定的认知,不熟悉者请自行百度或者阅读参考博客1、2、3和4。除此之外,在阅读本文过程中,如果对某种方案不理解,强烈建议先阅读对应方案中的参考博客后再阅读本文中对应的介绍。
分布式事务的对立方,肯定是非分布式事务,也就是本地事务,我们平常经常碰到的那种,也是工作中经常遇到的。
分布式事务学习项目:流量充值中心 git地址:https://github.com/barrywangmeng/data-refill-center
分布式事务是分布式系统中非常重要的一部分,最典型的例子是银行转账和扣款,A 和 B 的账户信息在不同的服务器上,A 给 B 转账 100 元,要完成这个操作,需要两个步骤,从 A 的账户上扣款,以及在 B 的账户上增加金额,两个步骤必须全部执行成功;否则如果有一个失败,那么另一个操作也不能执行。
分布式事务的问题,在微服务架构中一直是难题。单体应用实现本地事务即可,到了分布式环境,情况就变得复杂。一个请求可能涉及多个服务,上下游存在依赖关系,其中的一环失败,需要将整个事务回滚。笔者在去年上半年开源过一款微服务的分布式事务组件:lottor,基于可靠消息的柔性分布式事务实现方案。引入的 Lottor 客户端使用比较复杂,具有业务侵入性。推广使用的效果并不是很好。阿里在今年年初开源了 Seata(原名 fescar),引起了强烈的反响。笔者最近也在考虑改进 Lottor,借学习实践 Seata 的机会,和大家分享一下。
微服务倡导将复杂的单体应用拆分为若干个功能简单、松耦合的服务,这样可以降低开发难度、增强扩展性、便于敏捷开发。当前被越来越多的开发者推崇,系统微服务化后,一个看似简单的功能,内部可能需要调用多个服务并操作多个数据库实现,服务调用的分布式事务问题变的非常突出。分布式事务已经成为微服务落地最大的阻碍,也是最具挑战性的一个技术难题。
在微服务开发中,存在诸多的开发痛点,例如分布式事务、全链路跟踪、限流降级和服务平滑上下线等。而在这其中,分布式事务是最让开发者头痛的。那分布式事务是什么呢?
在上一篇文章《【分布式事务】基于RocketMQ搭建生产级消息集群?》中给大家介绍了基于RocketMQ如何搭建生产级消息集群。因为本系列文章最终的目的是介绍基于RocketMQ的事物消息来解决分布式系统中的数据一致性问题,所以先给大家率先介绍了RocketMQ消息集群的搭建。
随着行业IT应用的业务复杂度提升、数据级日渐庞大、应用面越来越广、并发压力也越来越高。为了应对这样的情况,分布式系统的解决方案随之而出,成为目前主流架构模式。当然,是否采用分布式方案取决于实际业务系统要求。
事务是数据库系统中非常有趣也非常重要的概念,它是数据库管理系统执行过程中的一个逻辑单元,它能够保证一个事务中的所有操作要么全部执行,要么全不执行;在 SOA 与微服务架构大行其道的今天,在分布式的多个服务中保证业务的一致性就需要我们实现分布式事务。
只要聊到你做了分布式系统,必问分布式事务,你对分布式事务一无所知的话,确实会很坑,你起码得知道有哪些方案,一般怎么来做,每个方案的优缺点是什么。
不知道你是否遇到过这样的情况,去小卖铺买东西,付了钱,但是店主因为处理了一些其他事,居然忘记你付了钱,又叫你重新付。又或者在网上购物明明已经扣款,但是却告诉我没有发生交易。这一系列情况都是因为没有事务导致的。这说明了事务在生活中的一些重要性。有了事务,你去小卖铺买东西,那就是一手交钱一手交货。有了事务,你去网上购物,扣款即产生订单交易。
Fescar 是 阿里巴巴 开源的 分布式事务中间件,以 高效 并且对业务 0 侵入 的方式,解决 微服务 场景下面临的分布式事务问题。
以下是官网的文档。 简介 2019年,Fescar 是 阿里巴巴 开源的 分布式事务中间件,以 高效 并且对业务 0 侵入 的方式,解决 微服务 场景下面临的分布式事务问题。
2PC 最大的诟病是一个阻塞协议。RM在执行分支事务后需要等待TM的决定,此时服务会阻塞并锁定资源。由于其阻塞机制和最差时间复杂度高, 因此,这种设计不能适应随着事务涉及的服务数量增加而扩展的需要,很难用于并发较高以及子事务生命周期较长 (long-running transactions) 的分布式服务中。
在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:
第7步执行成功之后,网络出问题了,第8步会提交失败,此时的结果是:A库资金减少了100,B库资金却没有增加;这是一个网络问题导致了我们业务失败了,网络因素是程序不可控的一些因素,还有其他的比如运行到7之后,系统突然断电了,也会出现同样的结果。造成了数据错误,对业务影响也是比较大的。
什么意思呢?也就是说,[1] 订单服务-修改订单状态,[2] 库存服务-扣减库存,[3] 积分服务-增加积分,[4] 仓储服务-创建销售出库单。
这篇文章主要介绍一些目前主流的几种分布式解决方案以及阿里开源的一站式分布式解决方案Seata。
考虑支付重构的时候,自然想到原本属于一个本地事务中的处理,现在要跨应用了要怎么处理。拿充值订单举个栗子吧,假设:原本订单模块和账户模块是放在一起的,现在需要做服务拆分,拆分成订单服务,账户服务。原本收到充值回调后,可以将修改订单状态和增加金币放在一个mysql事务中完成的,但是呢,因为服务拆分了,就面临着需要协调2个服务才能完成这个事务
2 用户支付完成会将支付状态及订单状态保存在订单数据库中,由订单服务去维护订单数据库。而学生选课信息在学习中心数据库,由学习服务去维护学习中心数据库的信息。下图是系统结构图:
上一篇:《分布式之Zookeeper核心原理详解》我们对于zookeeper的一致性协议Zab与原子广播,以及根据其原理的一些运用场景有了一个清晰的认知。这一篇还是围绕着分布式一致性这个话题来讨论,那就是分布式事务问题。
领取专属 10元无门槛券
手把手带您无忧上云