首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧

我们还将探讨 Pandas 在大规模数据上的应用,帮助开发者更好地理解与掌握 Pandas 在机器学习项目中的高级用法。...# 计算滚动平均 df['Rolling_Mean'] = df['Value'].rolling(window=3).mean() # 计算一阶差分 df['Diff'] = df['Value']...第六部分:Pandas 的性能优化与并行计算 在处理大型数据集时,性能优化 是提高数据处理效率的关键环节。Pandas 作为一种单线程的工具,在面对数百万甚至数千万条记录时,可能会显得性能不足。...本节将介绍几种常用的 Pandas 性能优化方法,尤其是与并行计算相关的工具。 6.1 减少数据拷贝 在处理大型数据时,避免不必要的数据拷贝可以有效节省内存。...你可以将 Pandas 的代码迁移到 PySpark 上,处理超大规模数据。

23910

向量化操作简介和Pandas、Numpy示例

向量化的好处 在Pandas中向量化提供了几个好处: 效率:操作针对性能进行了优化,并且比传统的基于循环的操作快得多,特别是在大型数据集上。...向量化提高代码的速度 向量化是一种强大的编程技术,可以加快代码的执行速度。这种方法利用底层优化的硬件指令和库,使计算更快、更高效。让我们以Python和NumPy为例,探索向量化如何加快代码的速度。...使用NumPy进行向量化操作 NumPy是一个流行的Python库,提供对向量化操作的支持。它利用了优化的C和Fortran库,使其在数值计算方面比纯Python循环快得多。...优化的低级指令:像NumPy这样的库使用优化的低级指令(例如,现代cpu上的SIMD指令)来对数组执行操作,充分利用硬件功能。这可以显著提高速度。...总结 Pandas和NumPy等库中的向量化是一种强大的技术,可以提高Python中数据操作任务的效率。可以以高度优化的方式对整个列或数据集合执行操作,从而生成更快、更简洁的代码。

87020
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    超强Python『向量化』数据处理提速攻略

    这是一个非常基本的条件逻辑,我们需要为lead status创建一个新列。 我们使用Pandas的优化循环函数apply(),但它对我们来说太慢了。...现在的numpy.where(),只查看数组中的原始数据,而不必负责Pandas Series带来的内容,如index或其他属性。这个小的变化通常会在时间上产生巨大的差异。 各位!...你可以使用.map()在向量化方法中执行相同的操作。 3、日期 有时你可能需要做一些日期计算(确保你的列已经转换为datetime对象)。这是一个计算周数的函数。...向量化所需要的所有函数都是在同一行上比较的值,这可以使用pandas.shift()实现! 确保你的数据正确排序,否则你的结果就没有意义! 很慢!...为了解决这个问题,我们对Pandas中的一个series使用.shift()将前一行移到相同的级别。一旦它们被转移到相同的级别,我就可以使用np.select()执行相同的条件向量化方法了!

    6.8K41

    Pandas、Numpy性能优化秘籍(全)

    如下我们会介绍一些优化秘籍:里面包含了 代码层面的优化,以及可以无脑使用的性能优化扩展包。 1、NumExpr NumExpr 是一个对NumPy计算式进行的性能优化。...4.1 按行迭代优化 我们按行对dataframe进行迭代,一般我们会用iterrows这个函数。...使用eval表达式的一个经验是数据超过 10,000 行的情况下使用会有明显优化效果。...Swifter的优化方法检验计算是否可以矢量化或者并行化处理,以提高性能。如常见的apply就可以通过swifter并行处理。...或者ray(dask是类似pandas库的功能,可以实现并行读取运行),是个支持分布式运行的类pandas库,简单通过更改一行代码import modin.pandas as pd就可以优化 pandas

    2.8K40

    ChatGPT:搞『量化投资』我是认真的!

    直接写了一本量化交易的书 为此,QIML与ChatGPT进行了深度测试,来看看它到底适不适合干量化!...关于量化研究 如何使用风险模型进行组合优化,ChatGPT提到了常用的组合优化模型,其中也包括风险平价模型,并主动给出了使用cvxpy进行优化求解的实例代码。...关于统计与机器学习 怎么使用Pandas进行滚动回归计算? 如何使用机器学习进行市场冲击的预测?...超参数优化的代码: 最后 以上所有的问题,ChatGPT都给予了QIML非常满意的答案。...ChatGPT虽然无法完成复杂的策略构建并直接生成稳健的量化策略,但可以极大的提高量化研究人员获取知识的效率。 在日常研究过程中,ChatGPT可以作为我们得力的助手!

    1.1K70

    ChatGPT:搞『量化投资』我是认真的!

    直接写了一本量化交易的书为此,QIML与ChatGPT进行了深度测试,来看看它到底适不适合干量化!...关于量化研究如何使用风险模型进行组合优化,ChatGPT提到了常用的组合优化模型,其中也包括风险平价模型,并主动给出了使用cvxpy进行优化求解的实例代码。...关于统计与机器学习怎么使用Pandas进行滚动回归计算?如何使用机器学习进行市场冲击的预测?...使用Transformer进行股价短期预测的实例代码:如何对两个变量的因果关系进行统计检验,ChatGPT不但给出了多种统计检验的理论,还给出了相关代码:给出使用Optuna进行lightgbm超参数优化的代码...ChatGPT虽然无法完成复杂的策略构建并直接生成稳健的量化策略,但可以极大的提高量化研究人员获取知识的效率。在日常研究过程中,ChatGPT可以作为我们得力的助手!

    1.7K80

    Python NumPy学习指南:从入门到精通

    矩阵转置 矩阵转置是交换矩阵的行和列。...NumPy的高级应用 向量化操作 向量化操作指的是将循环操作转化为数组操作,这样不仅简化了代码,还提高了计算效率。NumPy的核心优势之一就是高效的向量化运算。...在实际应用中,性能优化往往是我们需要考虑的重要方面。 使用向量化操作代替Python循环 在NumPy中,向量化操作通常比使用Python循环更快。...NumPy与其他科学计算库的集成应用 NumPy与SciPy SciPy是建立在NumPy基础上的一个科学计算库,提供了更高级别的数学函数和算法。...NumPy在科学计算中的最佳实践 使用NumPy进行高效的数据处理 在科学计算中,数据的高效处理至关重要。利用NumPy的向量化操作、广播机制和内存映射文件,可以显著提升数据处理的速度和效率。

    27310

    pandas 提速 315 倍!

    接下来,一起看下优化的提速方案。 一、使用 iterrows循环 第一种可以通过pandas引入iterrows方法让效率更高。...如果这个计算只是大规模计算的一小部分,那么真的应该提速了。这也就是矢量化操作派上用场的地方。 三、矢量化操作:使用.isin选择数据 什么是矢量化操作?...那么这个特定的操作就是矢量化操作的一个例子,它是在pandas中执行的最快方法。 但是如何将条件计算应用为pandas中的矢量化运算?...一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas的.isin()方法选择行,然后在矢量化操作中实现新特征的添加。...到目前为止,使用pandas处理的时间上基本快达到极限了!只需要花费不到一秒的时间即可处理完整的10年的小时数据集。 但是,最后一个其它选择,就是使用 NumPy,还可以更快!

    2.8K20

    Numpy库

    该函数将矩阵分解为三个矩阵的乘积,即 U、Σ 和 VT 。 QR 分解是将矩阵分解为一个正交矩阵 Q 和一个上三角矩阵 R 的乘积。...以下是一些最佳实践,帮助你更好地集成和使用这两个库: 理解NumPy和Pandas的关系: Pandas是基于NumPy构建的,因此大部分Pandas操作都依赖于NumPy进行数值计算。...向量化操作: 利用NumPy的向量化操作来替代循环,这将显著提升性能。例如,使用NumPy的np.add 、np.multiply 等函数进行数组操作,而不是逐个元素地进行加法或乘法运算。...这些步骤可以减少后续计算的负担,并提高整体效率。 并行计算: 对于特别大的数据集,可以考虑使用NumPy和Pandas的并行计算功能。...在深度学习框架中,NumPy也被广泛应用于神经网络的训练过程中。例如,在训练神经网络时,每轮训练包括前向计算、损失函数(优化目标)和后向传播三个步骤。

    9510

    高逼格使用Pandas加速代码,向for循环说拜拜!

    Pandas是为一次性处理整个行或列的矢量化操作而设计的,循环遍历每个单元格、行或列并不是它的设计用途。所以,在使用Pandas时,你应该考虑高度可并行化的矩阵运算。...现在让我们建立一个标准线,用Python for循环来测量我们的速度。我们将通过循环遍历每一行来设置要在数据集上执行的计算,然后测量整个操作的速度。...我们编写了一个for循环,通过循环dataframe对每一行应用函数,然后测量循环的总时间。 在i7-8700k计算机上,循环运行5次平均需要0.01345秒。...最后 前面我们提到过,如果你正在使用一个为向量化操作设计的库,你应该总是在没有for循环的情况下寻找一种方法来进行任何计算。...类似地,以这种方式设计的许多库,包括Pandas,都将具有方便的内置函数,可以执行你正在寻找的精确计算,但速度更快。

    5.5K21

    python df遍历的N种方式

    lambda函数的末尾包含axis参数,用来告知Pandas将函数运用于行(axis = 1)或者列(axis = 0)。...此处我们主要处理一维数组之间的计算,那么矢量化方式可使用Pandas series 的矢量化方式和Numpy arrays的矢量化方式两种。...Pandas包括了非常丰富的矢量化函数库,我们可把整个series(列)作为参数传递,对整个链表进行计算。...,iterrows()针对Pandas的dataframe进行了优化,相比直接循环有显著提升。...由于矢量化是同时作用于整个序列的,可以节省更多的时间,相比使用标量操作更好,NumPy使用预编译的C代码在底层进行优化,同时也避免了Pandas series操作过程中的很多开销,例如索引、数据类型等等

    2.9K40

    Pandas高级数据处理:窗口函数

    其中,窗口函数(Window Functions)是 Pandas 中一个非常强大的工具,可以对数据进行滚动计算、扩展计算等操作。...在 Pandas 中,窗口函数主要用于对时间序列数据或有序数据进行滚动计算、累积计算等操作。常见的窗口函数包括 rolling、expanding 和 ewm。...滚动窗口(Rolling Window)  滚动窗口是指在一个固定大小的窗口内对数据进行计算。例如,我们可以计算过去5天的平均值、最大值等统计量。...为了确保计算准确性,可以在计算前使用 fillna() 方法填充缺失值,或者使用 dropna() 方法删除含有缺失值的行。...性能优化当处理大规模数据集时,窗口函数的性能可能会成为一个瓶颈。为了提高效率,可以考虑以下几种方法:使用 numba 或 cython 对关键计算部分进行加速。尽量减少不必要的中间变量,避免重复计算。

    11110

    Pandas高级数据处理:实时数据处理

    对于实时数据处理来说,Pandas的优势在于其高效的内存管理和灵活的数据操作能力。1.1 DataFrame与SeriesDataFrame 是一个表格型的数据结构,包含有行和列。...下面列举了一些常见的问题及其解决方案。3.1 内存不足当处理大规模数据时,可能会遇到内存不足的问题。可以通过以下方式优化:分块读取:使用chunksize参数分批次读取数据。...选择性加载:只加载需要的列或行。数据类型转换:将不必要的浮点数转换为整数,或将字符串转换为分类变量。...可以通过以下方法提高性能:向量化操作:尽量使用Pandas内置的向量化函数,而不是循环遍历。并行计算:利用多核CPU加速计算过程。...# 向量化操作df['Discounted_Price'] = df['Price'] * (1 - df['Discount'])# 并行计算from multiprocessing import Pooldef

    15210

    超级攻略!PandasNumPyMatrix用于金融数据准备

    处理金融数据是量化分析的基础,当然方法都是通用的,换做其他数据也同样适用。本文回顾数据分析常用模块Pandas和NumPy,回顾DataFrame、array、matrix 基本操作。...主要实现对股票等金融数据从数据采集、清洗加工到数据存储的过程,能够为金融分析人员提供快速、整洁、和多样的便于分析的数据,为他们在数据获取方面极大地减轻工作量,使他们更加专注于策略和模型的研究与实现上。...pandas pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。...>>> dataset.shape (1320, 6) 滚动窗口计算 dataset.rolling(window=5).mean() # 求最后4行的均值 ?...布尔型,默认False,居右 win_type: 窗口的类型。截取窗的各种函数。字符串类型,默认为None。各种类型 on: 可选参数。对于dataframe而言,指定要计算滚动窗口的列。值为列名。

    7.3K30

    实战 | 教你快速爬取热门股票,辅助量化交易!

    量化交易有一个非常重要的指标 AR,它是通过固定公式计算出的,用于反映市场买卖人气的技术指标 一般用在多支股票的对比,通过 AR 技术指标能获取相应股票的热门指数,辅助我们进行选择 本篇文章将结合滚动市盈率...URL 爬取滚动市盈率 需要注意的是,滚动市盈率是鼠标 Hover 在上面 icon 处才会显示,所以我们需要模拟鼠标移动到上面图标的位置 from selenium.webdriver.common.action_chains...try: pe_roll = float(pe_roll) except: pe_roll = 0.0 return pe_roll ... # 获取股票的滚动...对数据键值对进行重命名,并通过 PE 值对数据进行一次过滤 PS:这里过滤出滚动市盈率大于 0 且小于 30 的股票 import pandas as pd # 重命名 code = {"name"...如果你对量化交易有自己的想法,欢迎在评论区交流!

    1.4K20

    算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环

    Pandas 向量化操作继 NumPy 之后,Pandas 在数据处理界也是个大腕儿。它的向量化操作专门针对表格数据,效率和功能都一流。...基本概念Pandas 向量化操作主要是指对 DataFrame 或 Series 对象进行的操作,这些操作不需要显式的循环。...就像 NumPy,Pandas 的操作也是建立在底层的 C 语言优化之上,所以速度很快,特别是在处理大型数据集时。...['Age'] > 24]老铁们,Pandas 的向量化操作让数据筛选、转换这些任务变得简单又快速。...并行处理在处理大规模数据或需要高性能计算时,单纯依靠向量化操作有时还不够,这时并行处理就闪亮登场了。并行处理能让我们把任务分散到多个处理器上,实现真正的同时执行,大幅提升效率。

    13000

    数据科学 IPython 笔记本 7.14 处理时间序列

    时间的类型化数组:NumPy 的datetime64 Python 的日期时间格式的缺陷,启发了 NumPy 团队,向 NumPy 添加一组原生时间序列数据类型。...,这类操作可以比我们直接使用 Python 的datetime对象快得多,特别是当数组变大时(我们在“NumPy 数组的计算:通用函数”中介绍了这种类型的向量化)。...底部面板显示填补空白的两种策略之间的差异:向前填充和向后填充。 时间平移 另一种常见的时间序列特定的操作是按时间平移数据。Pandas 有两个密切相关的计算方法:shift()和tshift()。...滚动窗口 滚动统计量是 Pandas 实现的第三种时间序列特定的操作。...= data.plot(style=['-', '--', ':']) ax.lines[0].set_alpha(0.3) 与分组操作一样,aggregate()和apply()方法可用于自定义滚动计算

    4.6K20

    Pandas字符串操作的各种方法速度测试

    由于LLM的发展, 很多的数据集都是以DF的形式发布的,所以通过Pandas操作字符串的要求变得越来越高了,所以本文将对字符串操作方法进行基准测试,看看它们是如何影响pandas的性能的。...因为一旦Pandas在处理数据时超过一定限制,它们的行为就会很奇怪。 我们用Faker创建了一个100,000行的测试数据。 测试方法 安装: !...7 -n 1 -o data['newcol'] = process(data.job.to_numpy(), data.company.to_numpy()) 显式在numpy数组上使用numpy向量化...原生的字符串加法C = a+b 从1000行扩展到100,000行所需的时间; 可视化对比: 所有矢量化方法都非常快,而且pandas标准的str.add对numpy数组也进行了矢量化。...时间 可视化 从时间上看,长度超过10,000的DF时,向量化是正确执行的 下图是第三个函数,就是*100,这更能说明问题,向量化操作的基本上时间没有变化 总结 通过上面的测试,我们可以总结一下结果

    17540

    用 Swifter 大幅提高 Pandas 性能

    Apply很好,因为它使在数据的所有行上使用函数变得很容易,你设置好一切,运行你的代码,然后… 等待…… 事实证明,处理大型数据集的每一行可能需要一段时间。...矢量化 对于这个用例,我们将把矢量化定义为使用Numpy来表示整个数组而不是它们的元素上的计算。...并行处理 几乎所有的计算机都有多个处理器。这意味着您可以很容易地通过利用它们来提高代码的速度。因为apply只是将一个函数应用到数据帧的每一行,所以并行化很简单。...来源https://github.com/jmcarpenter2/swifter Swifter的做法是 检查你的函数是否可以向量化,如果可以,就使用向量化计算。...如果无法进行矢量化,请检查使用Dask进行并行处理还是只使用vanilla pandas apply(仅使用单个核)最有意义。并行处理的开销会使小数据集的处理速度变慢。 这一切都很好地显示在上图中。

    4.2K20
    领券