最重要的原因——说出来像是Black Lives Matter的影响——种族问题。
据外媒报道,纽约州立法机构刚刚通过了一项法令,禁止在学校中使用人脸识别和其他生物特征识别技术,直至 2022 年。该法案将由州长 Andrew Cuomo 签署。此前,旧金山、马萨诸塞州萨默维尔市等多地也已正式通过了在公共场所禁用人脸识别软件的法案。
近两年来,人脸识别技术引发的数据隐私问题一直备受公众讨伐。仅就2019年而言,全球范围内人脸识别技术使用相关的案件便层出不穷:瑞典数据保护机构(DPA)因当地一所高中使用人脸识别技术来记录学生出席情况开出金额20万瑞典克朗(约人民币14.6万元)的罚单;美国四个城市相继禁止政府部门使用人脸识别技术;微软公司疑似因隐私保护和授权瑕疵方面的原因删除了曾为全球最大的人脸识别数据库MS Celeb;Facebook因人脸识别功能或面临着可高达350亿美元的集体索赔;我国AI换脸软件ZAO因涉嫌侵犯隐私被工信部约谈整改...... 而近两个月,由于BLM运动的影响,人脸识别更是被推至风口浪尖,随着这项技术下沉到各个领域遍地开花,最终到达了一个需要法律深度介入的十字路口。
近日,马萨诸塞州的萨默维尔市议会通过了禁止在公共场所使用面部识别软件的投票。新政策生效后,该市各机构、分局或下属部门,均不得在公共场所使用面部识别技术。
事件一出,公众沸腾了。而就在这短短几天内,包括天津、南京、杭州在内的多个城市纷纷出手,力求在政策层面“禁止”人脸识别的应用。
那么时至今日,直播的野蛮生长时期早已过去,大大小小的直播平台也在顺应政策的变化市场的需求生存,取而代之的短视频却有迎头大上之意。短视频+电商”、“短视频+知识问答”、“短视频+招聘”……在短视频系统开发野蛮生长的这两年时间里,除了独立的短视频媒体,“平台+短视频”的商业模式也快速崛起,各类玩家相继入局,不断探索“短视频+”的新玩法和新模式。除去产品内容、市场需求之外,短视频系统有哪些部分组成?今天分析一下短视频系统开发的疑难问题解决方案。
新年伊始,关心国外动态的同学一定清楚,现在全美最关心的可不是什么新冠疫情,而是全国各地到处在发生的各种歧视黑人的种族歧视游行,尤其是不断有白人警察恶意对待黑人群众的新闻爆出,犹如星星之火可以燎原,有愈演愈烈之势。 这不,又有人翻出一起去年发生的案件,但这次被指责的除了白人警察却牵扯上了人脸识别功能。究竟是怎么一回事呢? 案件发生在去年1月,在美国新泽西州伍德布里奇市的一个名为汉普顿的酒店,酒店人员向警方报案,声称有人在酒店礼品店偷了糖果和其他零食。待警方赶到后,嫌疑人提供了一张驾照作为身份证明。 可以清
前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧。 视频人脸检测是图片
腾讯云人工智能产品提供计算机视觉、智能语音等人工智能技术,帮助合作伙伴和客户高效打造针对性的解决方案,助力各行各业的数字化和智能化转型。
往期目录 视频人脸检测——Dlib版(六) OpenCV添加中文(五) 图片人脸检测——Dlib版(四) 视频人脸检测——OpenCV版(三) 图片人脸检测——OpenCV版(二) OpenCV环境搭建(一) 更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧。 视
近日,2016计算机视觉和模式识别领域顶级学术会议(CVPR)于美国正式拉开序幕。 CVPR是世界顶级计算机会议之一(另外两个是ICCV和ECCV),内容涉及机器人、无人机、VR、AR、自动驾驶、生物
2018年7月,在国际权威计算机视觉竞赛PASCAL VOC comp4目标检测竞赛中,Yi+AI团队获得了目标检测单模型第一名,超越了现有排行榜中的微软研究院、谷歌 、阿里达摩院、Face++等国内外众多知名公司,以精度90.7%的成绩打破了世界记录,成为世界第一家总成绩突破90%计算机视觉企业。同时在Pascal VOC “comp3”中,首次突破80%,刷新世界纪录。
大家好,又见面了,我是你们的朋友全栈君。 1.技术体系 1.1技术体系整理 其中绿色底色的代表Demo中表现出的能力比较成熟,可以直接应用。 脑图地址: http://naotu.bai
也许你已经听过了这一消息。去年,斯坦福大学的 助理教授 Michael Kosinki 和同事 Yilun Wang 在一篇论文中展示了人脸识别算法如何从图像中提取特征,来识别某人是否是同性恋。研究称,在只有一张正面照的情况下,算法判断男同性恋的准确率达到 81%,女同性恋的准确率则为 74%。
借助人脸识别,人们可以登录 iPhone,在人群中追踪犯罪分子,在商店中辨别出忠实顾客。此项技术并不完美,但正处于快速改进之中。它基于学习识别人脸的算法以及人脸的数百种特征。
EasyCVR是我们设备接入协议最为广泛的视频平台,包括安防市场的主流标准协议国标GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK,如海康Ehome、海康SDK、大华SDK等。在视频能力上,EasyCVR支持海量视频汇聚管理,可提供视频监控直播、云端录像、云存储、录像检索与回看、智能告警、平台级联、智能分析等视频服务。
1)提出的扩散嵌入网络可以解决流形不匹配问题,并且易于生成潜码,与 ImageNet 潜在空间更好地匹配。
白交 发自 凹非寺 量子位 | 公众号 QbitAI 只是因为被AI识别成盗窃犯,他就被警察送进监狱。 即便他从未去过案发现场,即便那个地方距他居所将近1000公里。 更离谱的是,据律师透露的消息,他还比监控录像中的罪犯轻了40磅(36斤)! 即便如此,执法部门还是对他进行了逮捕,让他在监狱一个星期。 有相关顾问表示:这项技术已导致至少三起错误逮捕。 将面部识别当做逮捕嫌疑人的唯一理由,是一种不断增长的趋势。 靠算法来抓人 28岁住在佐治亚州迪卡尔布县的里德,正驱车前往与母亲的感恩节后期庆祝活动。 他怎么
今天给大家聊点机器学习,不过这篇是给小白读者写的,会比较基础,不需要太多数学知识就能看懂。当然一篇文章入门是不够的,但一定可以让你理解机器学习最核心最根本的原理,理解整个算法运行的机制和主要脉络。
雷锋网按:本文根据涂图CTO在七牛云架构师沙龙上的演讲整理,本篇主要谈谈人脸识别技术的原理与具体实践的一些问题,作者授权发布雷锋网。 在上篇文章的最后,我们提到了美颜2.0最关键的技术——人脸识别。这是项复杂但又非常热门的技术,我们将在这篇文章中聊一聊图像识别技术。 一、如何让机器看懂世界? 这里我们来简单聊聊机器学习与深度学习。 近段时间,机器学习、深度学习的概念非常火,尤其是今年 AlphaGo 击败了韩国棋手这件事,引起了世界的轰动。机器学习和深度学习这两个概念,比较容易混淆,以至于很多媒体在写报道时
场景描述:「人工智能进课堂」的话题近日登上微博热搜,学生上课无论睡觉、玩手机还是其他小动作,都会被监控系统实时捕捉到。学生党纷纷感叹「做学生太难了!」其实,课堂监控系统在亚洲早已不是新鲜事,印度德里曾宣布,所有公立学校都要安装摄像头,监控学生上课状态。这一项目已在今年 7 月启动。
前言: 6月21日,《福布斯》刊文指出,人工智能领域知名科技媒体TOPBOTS评选出了20位驱动中国人工智能改革的科技领导者,创新工场联合创始人李开复、百度集团总裁兼COO陆奇、腾讯人工智能实验室主任
晓查 发自 凹非寺 量子位 报道 | 公众号 QbitAI 315晚会让大家意识到人脸识别有多可怕。在大洋彼岸,全球最具影响力的AI数据集也开始行动了。 近日,ImageNet数据集决定:给所有人脸打码,保护被收录者隐私。 ImageNet管理者之一Olga Russakovsky与李飞飞团队合作,一起“纠察”数据集中所有包含人脸的图像。 ImageNet总共有1000多个标签,其中只有3个标签与人相关,而很多看似与人脸无关的标签下,反而可能有大量人脸照片。 因此,研究团队通过亚马逊Rekognitio
本篇概览 本文是《JavaCV的摄像头实战》的第八篇,前面的操作夯实了的帧和流处理的基本功,接下来开始实现一些常见的CV能力,就从本篇的人脸识别开始吧 OpenCV中常用的人脸识别是基于Haar特征的级联分类器,本篇借助JavaCV来使用该分类器实现人脸识别 简单的设计 编码之前先把要做的事情梳理一下: 识别功能可能用在多个场景:窗口预览、推流、存文件都可能用到,所以识别功能的代码最好独立出来,不要和预览、推流这些代码写在一起,如下图,识别的接口DetectService会作为每个应用的成员变量存在:
工信部发布《充分发挥人工智能赋能效用 协力抗击新型冠状病毒感染的肺炎疫情倡议书》,倡议进一步发挥人工智能赋能效用,组织科研和生产力量,把加快有效支撑疫情防控的相关产品攻关和应用作为优先工作。加大科研攻关力度,尽快利用人工智能技术补齐疫情管控技术短板,快速推动产业生产与应用服务。优化AI算法和算力,助力病毒基因测序、疫苗/药物研发、蛋白筛选等药物研发攻关。
大数据文摘作品 也许有一天,举枪的邦德将真的会成为只在电影里存在的画面。 007们所依赖的伪造身份正在被他们自己曾经引以为豪的高科技秘密武器所识别。他们的快速反应能力、强大的心理素质也注定无法与正迅速成长的AI鉴别力匹敌。 美国中央情报局(CIA,简称中情局)现在已经意识到了这一点。 “现在中情局的主要对手不是外国特工,而是机器。” 中情局负责技术开发的副主任Dawn Meyerriecks,最近在佛罗里达的一个情报会议上无奈表示。 中情局面临的这一困境来源于身份识别的人工智能,很多国家正依靠AI来追踪敌方
人脸识别使用 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与 已知对象是否匹配。Haar 特征分为 4 种类型:边缘特征、线性特征、中心特征和对角线特征。将这些特征组合成特征模板,特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白 色矩形像素之和减去黑色矩形像素之和。Lienhart R.等人对 Haar-like 矩形特征库做了进一步 扩展,扩展后的特征大致分为 4 种类型——边缘特征、线性特征、圆心环绕特征和特定方向 特征,如图 1所示。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书重点对人脸识别组成以及人脸识别安全面临的阿全风险进行了详细介绍与分析。
今年7月份,两大银行接连爆出多名储户的数百万存款被异地“刷脸”盗取,引发全社会关注。其实,因人脸安全问题导致资金被盗、被贷款安全事件已不是新鲜事。
李林 | 编译自ScienceDaily 量子位·QbitAI 出品 不就前,普林斯顿大学和英特尔一起举办了一场黑客马拉松,要研究“读心术”:当一个人思考的时候,用软件来解读TA在想什么。 大约有30名神经科学家和程序员参加了这场黑客马拉松。 这场黑客马拉松的成果还不错,程序解码数字化脑信号数据的能力大大增强,可以通过fMRI扫描得来的数据解释神经活动如何助力学习、记忆和其他认知功能。 “实时监测大脑的能力具有巨大的潜力,可以改善脑部疾病的诊断和治疗,以及对心理作用的基础研究。” 普林斯顿神经科学教授、神经
本文将介绍OpenCV,JavaCV以及OpenCV for Android(以下简称OpenCV4Android)之间的区别,并以一个人脸识别的Android应用为例,详细介绍可以采用的实践方案。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。该白皮书对保障人脸信息安全、提升人脸识别算法精准度和保障人脸识别系统安全三方面给出了具体指导建议。
人脸识别在我们的日常生活之中非常常见,手机解锁需要通过人脸识别,进入学校图书馆、宿舍门禁也需要人脸识别,在付款的时候同样可以利用人脸识别进行线上支付。人脸识别方便了大家的生活,也让很多人在出门的时候甚至连手机都不用带,只需要靠着一张脸就可以轻松完成“衣食住行”,造就出真正的“靠脸的社会”。那么人脸识别究竟有什么作用呢?它背后的安全性又是如何的呢?
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
中兴智能视觉大数据报道:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别的应用集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。人脸识别在国内广为人知始于近几年,其实早在20世纪90年代人脸识别就已在美国、德国、日本等国家应用,作为新兴技术,人脸识别搭载“高科技”标签,广为产品厂商和用户喜爱。
深度学习在物体识别中的应用 ImageNet图像分类 深度学习在物体识别中最重要的进展体现在ImageNet ILSVRC3挑战中的图像分类任务。传统计算机视觉方法在此测试集上最低的错误率是26.172%。2012年,欣顿的研究小组利用卷积网络把错误率降到了15.315%。此网络结构被称为Alex Net,与传统的卷积网络相比,它有三点与众不同之处:首先,Alex Net采用了dropout的训练策略,在训练过程中将输入层和中间层的一些神经元随机置零。这模拟了噪音对输入数据的各种干扰使一些神经元对
近日,顶象发布《人脸识别安全白皮书》。该白皮书共有8章73节,系统对人脸识别的组成、人脸识别的内在缺陷、人脸识别的潜在安全隐患、人脸识别威胁产生的原因、人脸识别安全保障思路、人脸识别安全解决方案、国家对人脸识别威胁的治理等进行了详细介绍及重点分析。
导读:在本文中,我们将会接触到一个既熟悉又陌生的概念——人脸识别。之所以熟悉,是因为人脸识别技术在我们日常生活中应用极其广泛,例如火车站刷脸验票进站、手机人脸解锁等;之所以陌生,是因为我们可能并不了解人脸识别的原理,不了解人脸识别的任务目标、发展历程与趋势。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就金融行业存在人脸安全风险进行了详细分析,并对在公共服务领域人脸安全的安全防护提出具体建议。
近日,顶象发布《人脸识别安全白皮书》。《白皮书》对人脸安全事件、风险产生的原因进行了详细介绍及重点分析。
本文由“我道(myfaithmyroad)”授权转载 作者,刘志斌,字炫材,清华博士毕业,先后在盛大创新院、百度、腾讯任职。目前为微信大数据架构师,研究内容覆盖数据挖掘、互联网金融、社交网络与信息传播。近期新开个人公众号“我道”,撰写作者对领域的心得与行业的见解。 近年来机器学习、AI领域随着深度神经网络(DNN)的崛起而迎来新一波的春天,尤其最近两年无论学界还是业界,或是各大媒体,甚至文盲老百姓都言必称“智能”。关于这方面,可讨论的东西实在太多太多,我不想写成一本厚厚的书,所以在此仅以机器学习在
起步阶段(1950s-1980s),这一阶段的人脸识别只是作为一般性的模式识别问题来研究,所采用的技术方案也是基于人脸几何结构特征的方法。
在好莱坞大片《速度与激情7》中有一个被称为“天眼”的系统。它可以调用世界上任何地方的摄像头,通过人脸识别技术来搜索你想要的人或事物,让其无所遁形。与之形成鲜明对比的是,提起现实中的安防,却仍然在依靠朝阳群众的举报来打击违法乱纪行为。网友调侃说:“朝阳群众已经成了可以与FBI、克格勃、军情六处等机构齐名的世界级情报机构。” 调侃的背后暴露出安防领域智能化的严重短板,而目前阶段蓬勃发展的人脸识别技术为智能安防的突破打开了一扇窗。近日,腾讯云在首届技术领袖峰会上宣布开放优图人脸识别技术
现如今人脸识别应用已经大规模走进我们的的生活,但人脸识别技术的研究仍然是计算机视觉的热点,还有哪些待解的问题?从应用的角度哪些新技术更值得关注?
据凤凰网科技报道,某大型行的人脸识别系统存在漏洞,造成6名储户百万元现金被异地盗取。受害人表示,远在异地的犯罪分子,7次通过了银行的人脸识别,6次通过活检,一次都没识别出来犯罪分子使用的是假人脸。
什么?方案里没有人脸识别,看来你们的方案还是老旧的方案。上面就是客户给你的方案汇报一个总结。是不是很委屈,是不是很郁闷,你是不是想说,我们也不是人脸识别企业,为什么要懂这么多啊。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就保险行业人脸安全事件进行了详细分析,并阐述了保险行业的人脸安全应用实践。
IBM CEO Arvind Krishna在日前递交给美国国会议员的一封信中提到了这个决定,并表示“IBM反对使用任何技术(包括其他供应商提供的人脸识别技术)来监视大众、种族定性、侵犯基本人权和自由,以及用于任何与我们价值观及原则不一致的目的。”
目前谈论起人脸识别,已经不是什么高深莫测的东西了。很多人都用过,切切实实的走进了人们的生活中,也确实给很多人带来了便利。从火车站的身份证人脸对比,小区的人脸识别门禁,超市的人脸识别储物柜,再到家庭的人脸识别智能锁,手机上的人脸识别解锁,人脸识别支付,各种嵌入式上面的人脸识别逐渐走进人们的生活。不管是否承认,我们确实逐渐进入了一个人工智能越来越繁荣的时代。嵌入式的ai也吸引了一大批爱好者的积极跟进。本文结合这几年的国内嵌入式上人脸识别的发展,谈一谈我的一些想法和对未来发展的一些预测。
领取专属 10元无门槛券
手把手带您无忧上云