首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

可用的生物医学注释数据集

生物医学注释数据集是指用于解释和注释生物医学实验数据的数据集。它包含了各种生物医学领域的数据,如基因组学、转录组学、蛋白质组学等。这些数据集可以帮助研究人员理解基因、蛋白质和其他生物分子的功能、相互作用和调控机制。

生物医学注释数据集可以分为以下几类:

  1. 基因组注释数据集:包括基因的位置、结构、功能等信息。常见的基因组注释数据集有基因组坐标注释、基因功能注释、基因表达注释等。
  2. 转录组注释数据集:包括基因的表达水平、剪接变异、可变剪接等信息。常见的转录组注释数据集有RNA-seq数据、microarray数据等。
  3. 蛋白质组注释数据集:包括蛋白质的结构、功能、相互作用等信息。常见的蛋白质组注释数据集有蛋白质结构数据库、蛋白质功能注释数据库等。
  4. 疾病注释数据集:包括与疾病相关的基因、突变、表达水平等信息。常见的疾病注释数据集有GWAS数据、疾病基因数据库等。

生物医学注释数据集在生物医学研究中具有重要的应用场景,例如:

  1. 基因功能预测:通过对基因组进行注释,可以预测基因的功能,帮助研究人员理解基因在生物体内的作用。
  2. 疾病研究:通过对疾病相关基因的注释,可以揭示疾病的发生机制,寻找治疗靶点和药物。
  3. 药物研发:通过对药物靶点的注释,可以预测药物的作用机制,辅助药物研发过程。

腾讯云提供了一系列与生物医学注释数据集相关的产品和服务,包括:

  1. 腾讯云基因组测序分析平台:提供基因组测序数据的分析和注释服务,帮助研究人员快速获取基因组的注释信息。
  2. 腾讯云生物信息分析平台:提供生物信息学分析工具和数据库,支持基因组、转录组、蛋白质组等数据的注释和分析。
  3. 腾讯云人工智能平台:提供基于人工智能算法的生物医学数据分析和挖掘服务,帮助研究人员发现新的生物学知识。

以上是关于可用的生物医学注释数据集的概念、分类、优势、应用场景以及腾讯云相关产品和产品介绍链接地址的完善且全面的答案。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Bioinformatics| 生物医学网络中的图嵌入方法

    今天给大家介绍Bioinformatics期刊的一篇文章,“Graph embedding on biomedical networks: methods, applications and evaluations”。文章研究了图嵌入方法在生物医学网络分析上的应用,来自美国俄亥俄州立大学、美国哥伦布国家儿童医院、华中农业大学的研究者完成了该项工作。文章选取了11种具有代表性的图嵌入方法,对3个重要的生物医学链接预测任务:(1)药物-疾病关联(drug-disease association, DDA)预测,(2)药物-药物相互作用(drug- drug interaction, DDI)预测,(3)蛋白质-蛋白质相互作用(protein - protein interaction, PPI)预测; 以及2个节点分类任务:(1)医学术语语义类型分类,(2)蛋白质功能预测进行了系统的比较。通过实验结果证明了目前的图嵌入方法取得了良好的效果,在生物医学网络分析方面具有很大的潜力。

    03

    U-Net: Convolutional Networks for Biomedical Image Segmentation

    人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,它依赖于数据扩充的强大使用,以更有效地使用可用的带注释的样本。该体系结构由捕获上下文的收缩路径和支持精确定位的对称扩展路径组成。我们证明这样的网络可以从非常少的图像端到端的训练,并且在ISBI挑战中在电子显微镜栈中神经结构的分割上胜过先前的最佳方法(滑动窗口卷积网络)。我们使用相同的网络训练透射光学显微镜图像(相位对比和DIC),在2015年ISBI细胞跟踪挑战赛中,我们在这些类别中获得了巨大的优势。此外,网络速度很快。在最近的GPU上,512x512图像的分割需要不到一秒的时间。

    03

    SELMA3D2024——3D光片显微镜图像自监督分割

    在现代生物学研究领域,可视化和理解组织和生物体内复杂结构的能力至关重要。经过组织透明化和特定结构染色后的光片显微镜 (LSM) 提供了一种高效、高对比度和超高分辨率的方法,可用于可视化各种样本中的各种生物结构,例如细胞和亚细胞结构、细胞器和过程。在组织透明化步骤中,在保持样本完整性和标记结构荧光的同时,原本不透明的生物样本变得透明,从而使光线能够更深入地穿透组织。在结构染色步骤中,可以使用各种染料、荧光团或抗体来选择性地标记样本内的特定生物结构并增强其在显微镜下的对比度。通过与结构染色和组织透明化步骤相结合,LSM 为研究人员提供了前所未有的能力,能够以高空间分辨率可视化复杂的生物结构,为神经科学、免疫学、肿瘤学和心脏病学等各种生物医学研究领域提供新的见解。在不同的生物医学研究领域中,为了分析 LSM 图像,分割在识别和区分不同的生物结构方面起着关键且必不可少的作用。对于非常小规模的 LSM 图像,可以手动进行图像分割。然而,在整个器官或身体 LSM 情况下,手动分割非常耗时,单个图像可能有 10000^3 体素,因此对自动分割方法的需求很高。基于深度学习的分割方法的最新进展为 LSM 图像的自动分割提供了有希望的解决方案。虽然这些方法的分割性能与专家人类注释者相当,但它们的成功很大程度上依赖于从大量手动注释图像训练集中进行监督学习,这些图像特定于一种结构染色。然而,对各种 LSM 图像分割任务进行大规模注释提出了巨大的挑战。在这种情况下,自监督学习被证明是有利的,因为它允许深度学习模型在大规模、未注释的数据集上进行预训练,学习 LSM 图像数据的有用和通用表示。随后,该模型可以在较小的标记数据集上进行微调,以完成特定的分割任务。值得注意的是,尽管存在大量不同生物结构的 LSM 数据,但自监督学习尚未在 LSM 领域得到广泛探索。LSM 图像的一些特性(例如高信噪比)使数据特别适合自监督学习。

    01

    『 论文阅读』U-Net Convolutional Networks for Biomedical Image Segmentation

    普遍认为,深度网络的成功培训需要数千个带注释的训练样本。在本文中,提出了一种网络和培训策略,依靠强大的数据增强功能(data augmentation)更有效地使用可用的注释示例。该体系结构包括捕捉上下文的收缩路径(contracting path)和实现精确定位的对称扩展路径(symmetric expanding path)。表明,这种网络可以从非常少的图像端对端地进行训练,并且在ISBI对电子微观堆栈中的神经结构进行分割的挑战方面优于先前的最佳方法(滑动窗口卷积网络)。使用透射光显微镜图像(相差和DIC)训练的相同网络,我们在这些类别中赢得了ISBI 2015细胞跟踪挑战赛并有大幅度提升。而且,网络速度很快。在最近的GPU上,512x512图像的分割需要不到一秒的时间。Caffe实现和模型见http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net。

    02

    Nat. Biotechnol.| BioCypher推动生物医学知识表征大一统

    今天我们介绍由海德堡大学医学院的Sebastian Lobentanzer等学者发表在Nature Biotechnology上的工作。在所有研究人员之中,标准化的生物医学知识表征是一项难以克服的任务,它阻碍了许多计算方法的有效性。为了促进知识表征的协调和互操作性,该工作将知识图谱创建的框架标准化。本文提出的BioCypher实现了这一标准化,这是一个FAIR(可查找、可访问、可互操作、可重用)框架,可以透明地构建生物医学知识图谱,同时保留源数据的来源。将知识映射到生物医学本体有助于平衡协调、人类和机器可读性以及对非专业研究人员的易用性和可访问性的需求。本文展示了该框架在各种用例中的有用性,从维护特定于任务的知识存储,到生物医学领域之间的互操作性,再到为联邦学习按需构建特定于任务的知识图。

    03

    CMU邢波教授:基于双向语言模型的生物医学命名实体识别,无标签数据提升NER效果

    【导读】生物医学文本挖掘领域近年来受到越来越多的关注,这得益于,科学文章,报告,医疗记录的电子化,使医疗数据更容易得到。这些生物医学数据包含许多生物和医学实体,如化学成分,基因,蛋白质,药物,疾病,症状等。在文本集合中准确识别这些实体是生物医学文本挖掘领域信息抽取系统的一个非常重要的任务,因为它有助于将文本中的非结构化信息转换为结构化数据。搜索引擎可以使用这种识别的实体来索引,组织和链接医学文档,这可以改善医疗信息检索效率。 实体的标识也可以用于数据挖掘和从医学研究文献中提取。例如,可以提取存储在关系数据库

    07

    Bioinformatics丨SumGNN:基于高效知识图总结的多类型药物相互作用预测

    今天为大家介绍的是剑桥大学CaoXiao等人发表在Bioinformatics上的文章“SumGNN: 基于高效知识图总结的多类型药物相互作用预测”。由于药物-药物相互作用(DDI)数据集和大型生物医学知识图(KGs)的不断增加,使用机器学习模型准确检测不良的DDI成为可能。然而,如何有效地利用生物医学大噪声KGs进行DDI检测仍是一个有待解决的问题。此外,以往的研究多集中于二值DDI预测,而多型DDI的药理作用预测更有意义,但任务更艰巨。为了填补空白,作者提出了一种新的方法SumGNN: 知识摘要图神经网络。这个网络是通过子图提取模块实现的,该子图提取模块可以有效地锚定KG中的相关子图,从而在子图中生成推理路径,以及多通道知识和数据集成模块,该模块利用大量外部生物医学知识,显著改善了多类型DDI的预测。SumGNN比最佳模型的性能高出5.54%,在低数据关系类型中性能提高尤其显著。此外,SumGNN通过为每个预测生成的推理路径提供可解释的预测。

    02

    【MIT博士论文】利用临床和生物医学表征学习的结构和知识

    来源:专知本文为论文介绍,建议阅读5分钟在本文中,我将探索新的生物医学数据预训练和表示学习策略,这些策略利用外部结构或知识来为局部和全局尺度的学习提供信息。 用于健康和生物医学领域的机器学习的数据集通常是有噪声的,采样不规律,只有稀疏的标记,相对于数据和任务的维度都很小。这些问题推动了表示学习在这个领域的应用,它包含了各种技术,旨在产生适合下游建模任务的数据集表示。该领域的表示学习还可以利用生物医学领域的重要外部知识。在本文中,我将探索新的生物医学数据预训练和表示学习策略,这些策略利用外部结构或知识来为局

    01

    生物医学研究和临床应用中单细胞RNA-seq数据分析指南

    单细胞RNA测序(scRNA-seq)在生物医学研究中的应用,提高了对疾病发病机制的认识,并为新的诊断和治疗策略提供了有价值的见解。随着包括临床样本在内的高通量scRNA-seq数据的扩大,对这些大量数据的分析已经成为进入这一领域的研究人员的一个必须面对的前景。在这里,回顾了典型scRNA-seq数据分析的工作流程,包括原始数据处理和质量控制,适用于几乎所有scRNA-seq数据集的基本数据分析,以及应针对特定科学问题量身定制的高级数据分析。在总结每个分析步骤的当前方法的同时,还提供了软件和脚本的在线数据。对一些具体的分析任务和方法提出了建议和注意事项。

    03
    领券