/前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值,大家讨论的甚为激烈,在此总结了两个方法,希望后面有遇到该问题的小伙伴可以少走弯路...2、现在我们想对第一列或者第二列等数据进行操作,以最大值和最小值的求取为例,这里以第一列为目标数据,来进行求值。 ?...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨
='"') CSV文件的第一条记录通常包含列标题,可能与文件的其余部分有所不同。...类似地,writerows()将字符串或数字序列的列表作为记录集写入文件。 在下面的示例中,使用csv模块从CSV文件中提取Answer.Age列。假设此列肯定存在,但列的索引未知。...检查文件中的第一个记录 data[0] ,它必须包含感兴趣的列标题: ageIndex = data[0].index("Answer.Age") 最后,访问剩余记录中感兴趣的字段,并计算和显示统计数据...Json文件处理 需要注意的一点就是某些Python数据类型和结构(比如集合和复数)无法存储在JSON文件中。因此,要在导出到JSON之前,将它们转换为JSON可表示的数据类型。...),并使用loads()将文本反序列化为对象列表。
Series是一个一维结构的序列,包含指定的索引信息,可以被视作DataFrame中的一列或一行。其操作方法与DataFrame十分相似。...list,重新定义列名,默认为None usecols = [] list,定义读取的列,设定后将缩短读取数据的时间,并减小内存消耗,适合读取大量数据,默认为None dtype = {} dict,...定义读取列的数据类型,默认为None nrows = None int类型,指定读取数据的前n行,默认为None na_values = ... str类型,list或dict,指定缺失值的填充值 na_filter...=2) #读取'id'和'name'两列,仅读取前两行 csv id name 0 1 小明 1 2 小红 03 分块读取 参数chunksize可以指定分块读取的行数,并返回一个可迭代对象...常国珍,曾任毕马威咨询大数据总监,具有近20年数据挖掘、精益数据治理、数字化运营咨询经验,是金融信用风险、反欺诈和反洗钱算法领域的专家。
Flat 文件是一种包含没有相对关系结构的记录的文件。(支持Excel、CSV和Tab分割符文件 ) 具有一种数据类型的文件 用于分隔值的字符串跳过前两行。 在第一列和第三列读取结果数组的类型。...其保存的文件后缀名为.dta的Stata文件。...data = pd.read_stata('demo.dta') 五、Pickled 文件 python中几乎所有的数据类型(列表,字典,集合,类等)都可以用pickle来序列化。...python的pickle模块实现了基本的数据序列和反序列化。...通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储;通过pickle模块的反序列化操作,我们能够从文件中创建上一次程序保存的对象。
Parquet经过优化,可以批量处理复杂的数据,并采用不同的方式进行有效的数据压缩和编码类型。这种方法最适合需要从大型表读取某些列的查询。Parquet只能读取所需的列,因此大大减少了IO。...以列格式存储数据的优点: 与CSV等基于行的文件相比,像Apache Parquet这样的列式存储旨在提高效率。查询列式存储时,您可以非常快地跳过无关数据。...由于每一列的数据类型非常相似,因此每一列的压缩非常简单(这使查询更快)。可以使用几种可用的编解码器之一压缩数据。结果,可以不同地压缩不同的数据文件。...Parquet和CSV的区别 CSV是一种简单且广泛使用的格式,许多工具(例如Excel,Google表格和其他工具)都使用CSV来生成CSV文件。...Parquet帮助其用户将大型数据集的存储需求减少了至少三分之一,此外,它大大缩短了扫描和反序列化时间,从而降低了总体成本。 下表比较了通过将数据从CSV转换为Parquet所节省的成本以及提速。
(内存与其他位置)翻译从内存中表示的数据称之为编码(也称为序列化),反之称为解码(反序列化)。...效率(用于编码或解码的CPU时间,以及编码结构的大小),java内置编码库臭名昭著的就是其糟糕的表现和臃肿的编码 JSON、XML与CSV 上面这几种格式,也是我们在编码之中常见到的。...而CSV没有任何模式,因此需要应用程序定义每个行和列的含义。如果应用程序添加了新行或列,则必须手动处理该更新。...编码简单地由连接在一起的值组成。在解析二进制数据时,通过使用模式来确定每个字段的数据类型。这意味着如果读取数据的代码与写入数据的代码使用完全相同的模式,二进制数据才能被正确地解码。...如果旧代码(不知道您添加的新标记号)试图读取由新代码编写的数据,包括一个新字段,该字段的标记号不识别,它可以简单地忽略该字段。数据类型注释允许分析器来确定需要跳过多少字节。
在大数据环境中,有各种各样的数据格式,每个格式各有优缺点。如何使用它为一个特定的用例和特定的数据管道。数据可以存储为可读的格式如JSON或CSV文件,但这并不意味着实际存储数据的最佳方式。...Apache Avro Avro是一种远程过程调用和数据序列化框架,是在Apache的Hadoop项目之内开发的。它使用JSON来定义数据类型和通讯协议,使用压缩二进制格式来序列化数据。...Apache Parquet 最初的设计动机是存储嵌套式数据,比如Protocolbuffer,thrift,json等,将这类数据存储成列式格式,以方便对其高效压缩和编码,且使用更少的IO操作取出需要的数据...基于列(在列中存储数据):用于数据存储是包含大量读取操作的优化分析工作负载 与Snappy的压缩压缩率高(75%) 只需要列将获取/读(减少磁盘I / O) 可以使用Avro API和Avro读写模式...你可以使用复杂类型构建一个类似于parquet的嵌套式数据架构,但当层数非常多时,写起来非常麻烦和复杂,而parquet提供的schema表达方式更容易表示出多级嵌套的数据类型。
其思想是有一个表(称之为选择器表),你在这个表中索引大部分/全部列,并执行你的查询。其他表是数据表,其索引与选择器表的索引匹配。然后你可以在选择器表上执行非常快速的查询,同时获取大量数据。...## Feather Feather 为数据框提供了二进制列序列化。它旨在使数据框的读写高效,并使数据在数据分析语言之间的共享变得容易。...Feather 旨在忠实地序列化和反序列化 DataFrames,支持所有 pandas 的数据类型,包括分类和带有时区的日期时间等扩展数据类型。...+ 在 `pyarrow` 引擎中,非字符串类型的分类数据类型可以序列化为 parquet,但会反序列化为其原始数据类型。...partition_cols是数据集将根据其进行分区的列名。列按给定顺序进行分区。分区拆分由分区列中的唯一值确定。
zip发到自己电脑,解压放进去文件的读取csv的打开方式:默认exceltextsublime R语言读取(在r语言里对数据框的修改不会影响原数据)读取 数据框read.csv("") 读取csv read.table...(变量名),不能输入文件名csv,不然是字符串,变量名一半不带“”,有“”的就是字符串数据框导出为表格文件csv格式txt格式Rdata是R语言特有的数据储存格式,无法用其他文件打开保存的事变量,不是表格文件...,支持多个变量存到同一个Rdatasave()保存load()读取读取的时候会出现的一些问题Header第一行其实有列名,只是去了第一行,且 使后面每一列数据类型都变成了字符型,因为向量只能有一个数据类型当提取第二行...,第四列的时候,其实取的事第一行,第四列查看帮助文档,read.table代码,发现header = FALSE(把列名做为第一行)read.csv\read.delim 的header = TURE...> x3 = x1[,-(1:4)]#反选,删掉前四列判断两个数据是否相同identical(x2,x3) 会得到答案 true 或者alse修改列名library(stringr)str_remove
传统上,数据交换通常采用文本格式,如CSV、XML、JSON等,但它们存在解析效率低、存储空间占用大、数据类型限制等问题,对于大规模数据的传输和处理往往效果不佳。...这种内存模型是基于列式存储设计的,它将数据划分为列,并且每个列都可以具有多个值。Arrow还支持嵌套数据类型,例如数组和结构体。2....这种格式可以使数据在不同语言之间共享,并通过序列化和反序列化过程将其编码为字节序列。...AvroAvro是一种基于行的数据序列化格式,用于在系统之间进行高效数据交换。它特别适用于流式数据处理,例如日志聚合和事件处理。Avro支持模式演化并使用JSON定义模式,使其易于使用。...它旨在实现不需要序列化和反序列化的不同系统和编程语言之间的高效数据交换。本文的主要观点如下:传统的数据交换格式如CSV和JSON在处理大型数据集时性能和灵活性方面存在限制。
decode_csv():将CSV记录转换为张量。每一列映射到一个张量。decode_gif():将gif编码图像的帧解码为uint8张量。...(弃用参数)deserialize_many_sparse():从序列化的迷你批处理反序列化并连接sparsetenators。...对于稀疏量,删除索引矩阵的第一个(batch)列(索引矩阵是列向量),值向量不变,删除形状向量的第一个(batch_size)条目(现在是单个元素向量)。...域:shape:输入数据的形状dtype:输入的数据类型default_value:如果示例缺少此特性,则使用的值。...它必须兼容dtype和指定的形状3、tf.io.VarLenFeature用于解析可变长度输入特性的配置。域: dtype:输入的数据类型
一、数据类型 (来源:Python 变量类型) Python有五个标准的数据类型: Numbers(数字) String(字符串) List(列表) 使用:[] list...这里 repr()是一个函数,其实就是反引号的替代品,它能够把结果字符串转化为合法的 python 表达式。...data.head(5) data.tail(5) 在R中为head(data)/tail(data) 2、数据类型 type(data) 3、列数量、行数量 len(R中的length) len(data...) #行数 len(data.T) #列数 其中data.T是数据转置,就可以知道数据的行数、列数。...通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储;通过pickle模块的反序列化操作,我们能够从文件中创建上一次程序保存的对象 保存: #使用pickle模块将数据对象保存到文件
对于 Pandas 用户来说,了解序列和数据帧的每个组件,并了解 Pandas 中的每一列数据正好具有一种数据类型,这一点至关重要。...或者,您可以使用dtypes属性来获取每一列的确切数据类型。select_dtypes方法在其include参数中获取数据类型的列表,并返回仅包含那些给定数据类型的列的数据帧。...强大的describe方法根据提供给include参数的数据类型产生不同的输出。 默认情况下,describe输出所有数字(主要是连续)列的摘要,并静默删除任何类别列。...更多 为了更好地了解对象数据类型的列与整数和浮点数之间的区别,可以修改这些列中每个列的单个值,并显示结果的内存使用情况。...索引具有get_loc方法,该方法接受索引标签并返回其整数位置。 我们找到要切片的列的开始和结束整数位置。 我们添加一个是因为用.iloc切片不包括最后一项。 步骤 3 将切片符号与行和列一起使用。
二进制数据 struct:将字节解析为打包的二进制数据 codecs:注册表与基类的编解码器 数据类型 datetime:基于日期与时间工具 calendar:通用月份函数 collections:容器数据类型...fnmatch:Unix风格路径名格式的比对 linecache:文本行的随机存储 shutil:高级文件操作 macpath:MacOS 9路径控制函数 持久化 pickle:Python对象序列化...存档文件 文件格式化 csv:读写CSV文件 configparser:配置文件解析器 netrc:netrc文件处理器 xdrlib:XDR数据编码与解码 plistlib:生成和解析Mac OS X.plist...文件 加密 hashlib:安全散列与消息摘要 hmac:针对消息认证的键散列 操作系统工具 os:多方面的操作系统接口 io:流核心工具 time:时间的查询与转化 argparser:命令行选项、...O完成 dummy_threading:threading模块的替代(当_thread不可用时) _thread:底层的线程API(threading基于其上) _dummy_thread:_thread
继续我们的R语言基础学习! 今天要学习的是R中的数据类型 在这些数据类型中,向量和数据框对于生信学习者来说较为重要。...c(1,2,5)中的元素 02数据框 1.示例数据准备 在工作目录下新建一个excel,取名为example并保存为csv格式,内容如下 千万不要直接另存为csv格式!!!...命令 查看其帮助文档 参数很多,我们对其进行简化,列出常用参数 read.table(file, header = FALSE, sep ="", quote = "\"'", dec = "....ASCII文本文件 2)header 用来确定数据文件中第一行是不是标题 header=T # 第一行是标题 header=F # 第一行不是标题 3)sep 表示分开数据的分隔符 不同函数默认分隔符不同...5)dec 用于指明数据文件中小数的小数点 6)row.names 保存行名的向量 以向量的形式给出每行的行名,或读取表中包含行名称的列序号 df csv('example.csv',
,而我们并不想要全部的列、而是只要指定的列就可以,就可以使用这个参数 pd.read_csv('data.csv', usecols=["列名1", "列名2", ....])...,要是满足条件的,就选中该列,反之则不选择该列 # 选择列名的长度大于 4 的列 pd.read_csv('girl.csv', usecols=lambda x: len(x) > 4) prefix...,序列化过程是将文本信息转变为二进制数据流,同时保存数据类型。...例如数据处理过程中,突然有事儿要离开,可以直接将数据序列化到本地,这时候处理中的数据是什么类型,保存到本地也是同样的类型,反序列化之后同样也是该数据类型,而不是从头开始处理 to_pickle()方法...还可以用作配置文件 XML和HTML之间的差异 XML和HTML为不同的目的而设计的 XML被设计用来传输和存储数据,其重点是数据的内容 HTML被设计用来显示数据,其焦点是数据的外观 XML不会替代HTML
dtype 例子: {‘a’: np.float64, ‘b’: np.int32} 指定每一列的数据类型,a,b表示列名 engine 使用的分析引擎。...{‘foo’ : 1, 3} -> 将1,3列合并,并给合并后的列起名为"foo" infer_datetime_format 如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型...,这是一种轻量级的可移植二进制格式,类似于二进制JSON,这种数据空间利用率高,在写入(序列化)和读取(反序列化)方面都提供了良好的性能。...squeeze 如果解析的数据只包含一列,则返回一个Series dtype 数据或列的数据类型,参考read_csv即可 engine 如果io不是缓冲区或路径,则必须将其设置为标识io。...'values' : just the values array typ 返回的格式(series or frame), 默认是 ‘frame’ dtype 数据或列的数据类型,参考read_csv即可
dtype 例子: {‘a’: np.float64, ‘b’: np.int32} 指定每一列的数据类型,a,b表示列名 engine 使用的分析引擎。...{‘foo’ : [1, 3]} -> 将1,3列合并,并给合并后的列起名为"foo" infer_datetime_format 如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型...,这是一种轻量级的可移植二进制格式,类似于二进制JSON,这种数据空间利用率高,在写入(序列化)和读取(反序列化)方面都提供了良好的性能。...squeeze 如果解析的数据只包含一列,则返回一个Series dtype 数据或列的数据类型,参考read_csv即可 engine 如果io不是缓冲区或路径,则必须将其设置为标识io。...'values' : just the values array typ 返回的格式(series or frame), 默认是 ‘frame’ dtype 数据或列的数据类型,参考read_csv即可
Series 可以认为Series 是含标记的一维数组。这个结构包括用于定位数据键值的标签索引。Series 中的数据可以是任何数据类型。pandas数据类型的详情见这里。...另一个.CSV文件在这里,将值映射到描述性标签。 读.csv文件 在下面的示例中使用默认值。pandas为许多读者提供控制缺失值、日期解析、跳行、数据类型映射等参数。...这些参数类似于SAS的 INFILE/INPUT处理。 注意额外的反斜杠\来规范化Windows路径名。 ? PROC IMPORT用于读取同一个.csv文件。...SAS代码打印uk_accidents数据集的最后20个观察数: ? ? ? ? 5 rows × 27 columns OBS=n在SAS中确定用于输入的观察数。...解决缺失数据分析的典型SAS编程方法是,编写一个程序使用计数器变量遍历所有列,并使用IF/THEN测试缺失值。 这可以沿着下面的输出单元格中的示例行。
数据来源于网易财经,可以直接下载(能直接下载就不要考虑爬虫了,目的是拿到数据,爬虫还要处理很多反爬)。 数据获取步骤: 1. 进入网易财经首页,站内搜索“贵州茅台”或其股票代码“600519”。...下载的数据编码格式是'gbk',所以读取数据时也要指定用'gbk',否则会报错。 ? 使用type()函数打印数据的类型,数据类型为DataFrame。...DataFrame的行索引index和列索引columns data = pd.read_csv("600519.csv", encoding='gbk') print(data.index) print...DataFrame中的数据类型 data = pd.read_csv("600519.csv", encoding='gbk') print(data.dtypes) 日期 object...相比,同一个ndarray中的数据类型是一致的,而DataFrame中的每一列数据可以是不同类型的数据。
领取专属 10元无门槛券
手把手带您无忧上云