首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

知识图谱从哪里来:实体关系抽取的现状与未来

因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

52810

知识图谱从哪里来:实体关系抽取的现状与未来

因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

82310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。...主要研究方向为表示学习、知识图谱和社会计算。

    75440

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。 然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。...主要研究方向为表示学习、知识图谱和社会计算。

    97020

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

    71820

    知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

    71010

    【NLP】知识图谱从哪里来:实体关系抽取的现状与未来

    因此,融入知识来进行知识指导的自然语言处理,是通向精细而深度的语言理解的必由之路。然而,这些知识又从哪里来呢?这就涉及到人工智能的一个关键研究问题——知识获取。...知识图谱 现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。...但与现实世界快速增长的知识量相比,知识图谱覆盖度仍力有未逮。由于知识规模巨大而人工标注昂贵,这些新知识单靠人力标注添加几无可能完成。...为了尽可能及时准确地为知识图谱增添更加丰富的世界知识,研究者们努力探索高效自动获取世界知识的办法,即实体关系抽取技术。...不过,使用已有知识图谱对齐文本来获取数据训练关系抽取模型,再利用该模型来抽取知识加入知识图谱,本身就有一种鸡生蛋与蛋生鸡的味道。

    1.4K10

    MuRP | 双曲空间下知识图谱链路预测新方法

    1 研究背景 然而,在分层多关系图数据结构中,双曲空间嵌入方法性能却不如欧几里得模型。因为在双曲空间中很难找到一种方式来表示跨关系共享的实体(节点),使得它们在不同的关系下形成不同的层次。...知识图谱是一个典型的分层多关系数据结构,将其嵌入到双曲空间中可能会有较明显的改进。因此该文章重点研究在双曲空间中嵌入多关系知识图谱数据,并进行链路预测。...MuRP的参数数随实体和关系的数目线性增加,从而具有较大的知识图谱可伸缩性。...3 实验 3.1 数据集 文章首先使用标准WN18RR和FB15k-237数据集测试庞加莱和欧几里得模型在知识图谱链接预测任务中的性能。...此外,由于知识图谱中并不是所有的关系都是分层的,后续工作可以将欧几里得和双曲模型结合起来,产生最适合数据曲率的混合曲率嵌入。

    2K60

    双链笔记+知识图谱+本地优先,这款开源知识管理神器绝了!

    嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和高效工作学习方法 一款融合「双链笔记+知识图谱+本地优先」理念的开源知识管理工具,支持Markdown/Org-mode双格式,打造你的第二大脑...核心功能亮点 知识神经元网络双向链接自动生成知识图谱块级引用实现知识点精准关联每日日志自动创建,捕捉灵感不遗漏 数据主权卫士本地Markdown文件存储端到端加密同步(可选)Git版本控制支持 学术研究利器...Research数据存储✅ 本地优先❌ 云端存储✅ 本地优先❌ 云端存储知识图谱动态生成有限支持插件实现原生支持移动端体验渐进式Web应用原生APP混合应用无移动端开源协议AGPLv3闭源闭源商业闭源商业中文支持完整汉化官方汉化社区汉化无官方汉化学习曲线中等简单中等陡峭知识管理全家桶推荐...Obsidian(黑曜石笔记):闭源双链笔记,插件生态丰富Trilium:树状结构知识库,支持自托管思源笔记:国产开源笔记,支持块级编辑Joplin:跨平台加密笔记,支持MarkdownHeptabase...:白板式知识管理,视觉化思考 小贴士:知识工具不在多而在精,建议先深度使用1-2款工具建立个人系统!

    10510

    漆远:小数据学习和模型压缩存挑战,场景成为 AI 技术发展关键

    我们当时做这个项目,应用在双11实时预测的用户产品推荐上,后来变成了阿里巴巴第一个大规模机器学习平台。所以一开始你要找到一个商业价值的落地点,如果我们做参数服务器,同样的技术,就是死路一条。...客服项目在蚂蚁金服可以说是第一个标杆性的人工智能落地项目,它一开始是典型的人力服务工作,在成都客服中心有几千人,每年双11接电话非常繁忙。...我们做了大约半年,自助率从60%一下子升到94%,2016年自助率高达97%,去年双11最忙的时候,客服小二实际上非常轻松。今年我们有了一个新的标杆性的指标,两三个星期前刚刚做到。...如果做知识图谱,其实跟深度学习没什么关系,今天的深度学习图谱其实是建了一个图模型,然后把这个点一个一个往下推,而这两个框架是完全分离的框架,这其实也是分裂的。大家能不能真正有一套机制,能有推理的功能?...刚才已经提到知识图谱了,大家其实现在有一系列算法讲知识图谱,knowledge graph,但是学术上发表的很多文章,工业上暂时是没法用的。

    3.1K30

    满周岁的“多多读书月”,改变了什么?

    电商行业“有节过节、没节造节”,阿里双11、京东618、苏宁818……每个平台都在造节搞大促,但拼多多却是一个例外,百亿补贴“每天都是双11”,根本不需要造节。...如果硬是要算的话,“多多读书月”算是拼多多造的一个节,也跟双11一样成了电商行业图书界的IP。...在全国范围内推进全民阅读并不是一件容易的事情,拼多多进行系统化的顶层设计,联合出版社、创作者等社会力量一起来推动平价正版图书市场可持续发展,一边给全国读者提供平价正版好书,让全国读者花小钱买好书;另一边则推出面向不同阅读群体的专项活动...一年下来,通过一套不断迭代的组合拳,“多多读书月”让好书更平价的同时营造全民阅读氛围,吸引更多人买好书、看好书,助力我国“全民阅读”战略落地。 “多多读书月”一岁了,到底改变了什么?...看纸质书的人减少,更多人不买书,图书产业规模效应减小,出版机构不得不提价,这导致“平价好书”急缺,一方面进一步增加了用户买好书成本,另一方面正版好书难卖(书价贵、缺渠道、盗版多等),“低价折扣”“爆款效应

    1.6K10

    多语言互通:谷歌发布实体检索模型,涵盖超过100种语言和2000万个实体

    ---- 新智元报道 编辑:QJP 【新智元导读】实体链接(Entity linking)通常在自然语言理解和知识图谱中起着关键作用。...2012年,谷歌推出了一个知识库的新概念:知识图谱,以提高搜索结果的质量。 这个知识库收集了来自 Wikipedia, Wikidata 和 CIA World Factbook 的数千亿事实。...谷歌的研究人员使用了所谓的增强型双编码器检索模型(enhanced dual encoder retrieval models )和 WikiData 作为他们的知识库,这些知识库包括大量不同的实体。...通过对 Wikipedia 和 WikiData 的操作,使用增强双编码检索模型和基于频率的评估实验提供了令人信服的证据,证明用一个涵盖100多种语言的单一模型来执行这项任务是可行的。...参考链接: https://venturebeat.com/2020/11/11/googles-ai-lets-users-search-language-agnostic-knowledge-bases-in-their-native-tongue

    86420

    WSDM2022 | 基于双曲几何无标度图建模的知识感知推荐算法

    abs/2108.06468 代码链接: https://github.com/yankai-chen/LKGR 本文介绍 为了缓解传统推荐系统中的冷启动与数据稀疏问题,近年来,向推荐系统中引入外部知识构建知识图谱受到了越来越多的关注...基于 GNN 的知识图谱推荐模型通常将用户-物品历史交互与外部知识图谱的交互统一为三部图,然而在数据统一之后,这些三部图通常呈现出无标度(或层次)图的特点,如图 1(a)所示,两项基准数据集的度分布近似于幂律分布...为了解决上述问题,本文提出了基于的双曲几何洛伦茨模型的知识感知推荐模型,简称为 LKGR。...相关定义 2.1 知识图谱 知识图谱一般可定义为三元组 ,r 表示连接实体 1 与实体 2 的关系,知识图谱一般被用来提供项目的外部知识;而用户-项目的交互关系可表示为 ,表示用户与项目之间的所有交互行为...首先需要对物品 i 进行 l 跳子图采样,以获得其在知识图谱中的高阶子图;然后从 l 跳子图传播知识,并迭代聚合到节点 i。

    2.4K30

    找回知识图谱的力量:Lattics 易用有效的笔记软件和写作工具

    双向链接确实好用,是构建知识管理体系和网络的利器。与此同时,知识图谱也是双向链接笔记软件的主要功能。知识图谱使用的迷思然而,在使用形形色色的各类双链笔记软件之后,发现我实际上很少使用图谱功能。...还是当前知识图谱的设计还需要进化?细细想来,主要由于图谱功能对于我个人的知识管理帮助不大。诚然,我看到了不少人分享各种酷炫好看的知识图谱。究竟到底有多少双链笔记软件用户会使用图谱?...他们在什么场景下使用图谱?图谱在多大程度上可以提升知识管理效率?对于知识管理使用的迷思,我需要问自己一个问题:知识图谱究竟为了带来了什么?如果把这个问题具体化,那便需要回答知识图谱的优点和缺点。...这种方法的优点是不局限于笔记软件,只要这个笔记软件支持基本的双向链接、图谱功能就可以践行。具体介绍,推荐阅读原文:「释放双链笔记图谱的力量——KG笔记法」如何选择知识管理工具?...Lattics 操作示范 ⬇️Lattics 的图谱有何不同?单从图谱角度进行对比,Lattics 也解决了以往双链笔记软件的一些存在的不少问题。

    95220

    商询科技李劼:用MR拯救“垃圾大数据”,重构知识图谱是制胜关键 | 镁客请讲

    DataMesh所做的,就是将这些知识图谱整合起来,通过分拣、分析,在这些图谱中打上各种信息标签。...随后,再通过机器学习、自然语言处理等技术,赋予图谱以“人性”,让其成为一个“图书馆管理员”,或者一位“数据助手”。...一旦维修工人有需要,这位“数据助手”就会根据工人所处的环境和所面对的问题,自动将“知识”推送给他,告诉他哪里坏了、应该怎么修或者找什么样的人来修。 “传统制造领域是非常需要这样的‘数据助手’的。...目前,DataMesh在汽车制造行业,已经和北京奔驰、北汽集团、一汽大众、广汽本田等的汽车制造厂商合作,为他们提供包括知识图谱、远程专家等专业服务。...总结 数据和MR都是风口领域,DataMesh就是在这种“双风口”的情况下找到了他们的联通性,并将“跨界”做深做实。

    68250

    知识图谱与大模型双向驱动的关键问题和应用探索

    ,图谱技术积极拥抱新一代AI技术体系,如大模型(Large Language Model, LLM),实现二者的双驱动增强,定义融合互通的技术范式和关键问题,借助LLM强大的语言理解能力,为基于非/半结构化数据的图谱构建提效...同时,结合大模型在领域落地的典型场景,我们致力于构建SPG + LLM双驱动的行业落地范式,以提升领域应用的可控性和可信度。另外,基于知识图谱解决LLM幻觉的问题是一项长期且复杂的工作。...通过框架的协同实现LLM与SPG双驱动,支持跨模态知识对齐、逻辑引导知识推理、自然语言知识查询等。这对SPG知识语义的统一表示和引擎框架的跨场景迁移提出了更高的要求。表1....SPG和LLM双驱的整体链路本文后面将详细介绍知识构建与图谱推理查询的能力模型,这里简单介绍下LLM与SPG对齐部分的能力模型,期望从四个层面推进SPG与LLM对齐层的能力建设:领域知识对齐。...图 10.SPG + LLM双驱总体技术框架未来,我们期望以OpenSPG为基础与OpenKG的深度协作,结合行业领域应用,不断提升提升OpenSPG的知识沉淀和系统引擎的能力:联动OpenKG沉淀领域常识知识图谱

    1.2K00
    领券