一提起“分布式系统”,大家的第一感觉就是好高大上啊,深不可测,看各类大牛关于分布式系统的演讲或者书籍,也大多是一脸懵逼。本文期望用浅显易懂的大白话来就什么是分布式系统、分布式系统有哪些优势、分布式系统
随着计算机系统规模变得越来越大,将所有业务单元集中部署在一个或者若干个大型机上的体系结构物,已经越来越不能满足当今计算机系统,尤其是大型互联网系统的快速发展,各种灵活多变的系统架构模型层出不穷。同时,随着微型计算机的出现,越来越多廉价的PC机成为了各大IT企业架构的首选,分布式的处理方式越来越受到业界的青睐----计算机系统正在经历一场前所未有的从集中式到分布式架构的变革。
分布式系统是一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅是通过消息传递进行通信和协调的系统。 首先分布式系统一定是由多个节点组成的系统,一般来说一个节点就是我们的一台计算机;然后这些节点不是孤立的,而是相互连通的;最后,这些连通的节点上部署了我们的组件,并且互相之间的操作会有协同。
分布式系统是由多个独立计算机节点组成的系统,这些节点通过网络进行通信和协调,共同完成某项任务。分布式系统架构是指如何组织和设计这些节点以及它们之间的通信方式,以达到高可用性、可伸缩性、容错性等目标。
(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
我们都知道,当今无论在BAT这样的大公司,还是各种各样的小公司,甚至是传统行业刚转互联网的企业都开始使用分布式架构,那么什么叫分布式架构呢?分布式架构有什么好处呢?分布式架构经过了怎样的发展呢?是哪家企业开启了分布式架构的时代呢?读完本文,你就会得到这些答案,下面让我们一起来开启分布式概述的奇妙之旅吧!
一、前言 我们都知道,当今无论在BAT这样的大公司,还是各种各样的小公司,甚至是传统行业刚转互联网的企业都开始使用分布式架构,那么什么叫分布式架构呢?分布式架构有什么好处呢?分布式架构经过了怎样的发展呢?是哪家企业开启了分布式架构的时代呢?读完本文,你就会得到这些答案,下面让我们一起来开启分布式概述的奇妙之旅吧! 二、分布式架构的发展历史 1946年2.14日,那是一个浪漫的情人节 , 世界上第一台电子数字计算机在美国宾夕法尼亚大学诞生了,她的名字叫ENIAC。这台计算机占地170平米、重达 30 吨,每
关于“分布式系统”的定义,我们先看下书中是怎么说的。《分布式系统原理和范型》一书中是这样定义分布式系统的:“分布式系统是若干独立计算机的集合,这些计算机对于用户来说就像是单个相关系统”。 关于这个定义,我们直观的感受就是: 首先,这种系统相对来说很厉害,由好几台主机组成。以谷歌、亚马逊等服务商而言,他们的数据中心都由上万台主机支撑起来的。 其次,虽然很它很厉害,但对于外人来说,是感觉不到这些主机的存在。也就是说,我们只看到是一个系统在运作。以最近的“亚马逊 S3 宕机事件”为例,平时,我们压根不知道亚马逊所提供的服务背后是由多少台主机组成,但是等到 S3 宕机才知道,这货已经是占了互联网世界的半壁江山了。 从进程角度看,两个程序分别运行在两个台主机的进程上,它们相互协作最终完成同一个服务(或者功能),那么理论上这两个程序所组成的系统,也可以称作是“分布式系统”。 当然,这个两个程序可以是不同的程序,也可以是相同的程序。如果是相同的程序,我们又可以称之为“集群”。所谓集群,就是将相同的程序,通过不断横向扩展,来提高服务能力的方式。 举一个生活中的例子来说明: 小饭店原来只有一个厨师,切菜洗菜备料炒菜全干。后来客人多了,厨房一个厨师忙不过来,又请了个厨师,两个厨师都能炒一样的菜,两个厨师的关系是集群。 为了让厨师专心炒菜,把菜做到极致,再请了个配菜师负责切菜,备菜,备料 ... , 厨师和配菜师的关系是分布式。 一个配菜师也忙不过来了,又请了个配菜师,两个配菜师关系是集群。 一个配菜师因故请假了,但是其余的配菜师还是该啥就干啥,只是没请假的配菜师任务均匀的加量了,但他们的任务和职责是不变的,这是集群。 店里生意很好,当店长接到订单后,看哪个厨师活儿不重,就将新的订单分给谁,这就是负载均衡。 集群:多个人在一起做同样的事 。 分布式 :多个人在一起做不同的事 。 负载均衡:决定将任务以某种规则分给谁做。
研究生阶段学习的分布式原理与泛型几乎忘完了,当初不怎么懂。。。现在工作中发现大数据技术的底层还是分布式系统,那么重新拾起,总结下~
分布式系统(Distributed System)是由集中式系统演化来的,先来看下传统的集中式系统:
【编者按】从表面上看,Bitly是一家主打URL缩短和分享的公司,然而究其根本,Bitly却是一家真正的大数据公司,每月60亿的点击量、6亿的缩短服务、1亿网页的爬取,Bitly可以说从事着典型的大数据BI业务。在HighScalability近日的一篇文章中,其创始人Tod Hoff分享了来自Bitly的分布式系统打造理念。 以下为译文 你是不是曾经很好奇bitly如何实现营利了?一个URL缩短工具怎么可能那么难写?Sean O'Connor,作为Bitly首席应用开发人员,在Bacon讨论会的一次发言
什么是锁,它用来解决什么问题? 分布式锁是控制分布式系统之间同步访问共享资源的一种方式。在分布式系统中,常常需要协调他们的动作。如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁。 在分布式系统中,常常需要协调他们的动作。如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,这个时候,便需要使用到分布式锁。
Apache有个非常棒的开源项目叫做Zookeeper,用于管理大量主机的分布式协调服务,很多人对Zookeeper的原理不太了解,那么本文瑞哥就带大家学习一下Zookeeper的基本原理。
拿着爸妈提供的物质,见识他们没有见识过的世面,体验他们没有体验过的人生,到头来,却嫌弃他们如此笨拙。
总之,监控系统是分布式系统中不可或缺的一部分。通过实时监测、警报、数据记录和分析等功能,监控系统可以帮助您确保系统的可用性、稳定性、性能、合规性和可维护性,为分布式系统的正常运行和管理提供强有力的支持。
版权声明:本文版权及所用技术归属smartguys团队所有,对于抄袭,非经同意转载等行为保留法律追究的权利!
分布式系统对于用户而言,他们面对的就是一个服务器,提供用户需要的服务而已,而实际上这些服务是通过背后的众多服务器组成的一个分布式系统,因此分布式系统看起来像是一个超级计算机一样。
分布式系统概念 What is a Distributed System? “一个分布式系统是若干个独立的计算机的集合, 但是对该系统的用户来说, 系统就像一台计算机一样。 ” 两个方面的含义:
在Redis官网中,是这样介绍Redis的: The open source, in-memory data store used by millions of developers as a database, cache, streaming engine, and message broker. 翻译为: 被数百万开发人员用作数据库、缓存、流媒体引擎和消息代理的开源内存数据存储
上面说这么多,总结一下,ZK 能解决分布式应用开发的问题,ZK 能很好的解决问题 。到这一步,疑问就更多了:
作者 | Ben Linders 译者 | 马可薇 策划 | 丁晓昀 分布式系统中有故障是很正常的,分布式系统只能确保一致性、可用性和分区容忍性三项中的两项。但 Kevlin Henney 认为,这种印象将限制了开发者对分布式系统行为方式的了解。Henney 曾于 2022 年伦敦 QCon 及 2022 年五月 10-20 日 QCon Plus 中发布了关于“6 个不能”的主题演讲。 Henney 认为,在一段代码中,我们可以透过结构和源代码缩进看到简单的控制流,如序列和分支。但我们看不见的则
这是一篇有点质疑基于Docker容器分布式系统是否在针对小型应用时过于复杂,有大炮打蚊子的嫌疑?当然,也可以从侧面了解一下Docker分布式生态圈的建设。本文翻译来自JDON的banq。 下面是采取对
当集群已经有过半的Follower完成同步Leader的状态,整个集群zk就进入了消息广播模式。
info: J. Saltzer,D. Reed,D. Clark. End-to-end Arguments in System Design[J]. Acm Transactions on Computer Systems (tocs), 1984, 2(4): 195-206. DOI:10.1145/357401.357402.
“Now.” 从我写这个单词到你读到它,时间已经过去了至少几个星期,这种延迟我们认为是理所当然的,甚至在我们读到任何文章的时候都不会想到这个问题。 “Now.” 如果我们在同一个房间内,我大声这么说,你可能会有更强的直观性。你可能会直觉的觉得,就像我在说这个词的同时你就听到了一样。这种直觉是错误的,如果你不相信你的直觉,而是思考声音的物理原理,你就会知道从我说话到你的听觉之间一定经过了一段时间。空气的传播,带着我的话,会花费时间从我的嘴传递到你的耳朵。 “Now.” 即使我举起一个写着哪个字的牌子,我们都看着它,我们对哪个形象的感觉也不会同时发生,因为携带着这个牌子信息的光传到我们每个不同的人需要不同的时间。 虽然计算机的某些特性是虚拟的,但是他们仍然碧玺在现实世界中运行,不能忽视现实世界的挑战。海军少将Grace Hopper (我们这一领域最重要的先驱之一,他的成就包括创造了第一个编译器)用给每个学生一根11.8英寸长的电线来说明这一点,则是电在1 ns内可以传输的最大距离。这种信息,时间和距离之间的关系的物理表征可以作为一种工具来解释为什么信号(就像我们上面的比喻符号)必须总是而且不可避免地要花费时间才能到达目的地。考虑到这些延迟,很难解释“now”在计算机系统中的确切含义。 不过,如果我们提前详细计划,理论上没有什么能组织我们对“now”达成共识。(相对论在这里不是问题,尽管它很容易让人分心。人类目前所有的计算系统都有一个足够严谨的参照系,使得人们对于时间的感知存在着非物质的相对论性差异。)NTP协议用于在互联网上同步系统之间的时钟,部分工作原理是计算信息在主机之间传输的时间。一旦知道了这个传输时间,主机就可以根据这个时间来调整时钟,以匹配更权威的消息来源。通过在网络中提供一些非常精确的源,基于连续测量原子辐射的时钟。我们能够使用NTP将计算机的时钟同步到一个很小的误差范围内。在GPS中每个卫星都包含多个原子钟,这样一个时钟失败不会使卫星不可用。GPS协议允许任何人使用,只需要他们能够收到足够多的卫星信号就能解出所有的变量。不仅可以确定接收装置自己的位置,而且可以非常精确的确定时间。 我们已经理解这些协议几十年了,因此,我们很容易相信我们已经克服了这类问题,我们们应该能够建立一个假设我们的时钟是同步的系统。原子钟,NTP和GPS卫星提供了信息传播所需的时间的知识和设备。因此我,任何地方的系统都应该能够就“now”达成一致,并共享对时间进程的共同、单一的看法。然后,网络和计算中的所有困难问题都将变得容易得多。如果你所关系的所有系统对时间的感知都是完全相同的,那么即使再一些涉及主机出现故障时,许多这些问题也可以解决,但是在构建实际的分布式系统中,这些问题任然存在,并且处理它们不仅是一个持续活跃的研究领域,而且也是一个主要的关注点。 你可能会看到用于理解时间的成熟机制,并相信研究人员和系统构建者正在做大量不必要的工作。既然我们制定如何同步,为什么还要试图解决时钟可能不同的问题呢?为什么不适用时钟源和协议的正确组合来让时钟一致,继续前进,客服这些问题?有一件事情让这种说法难以置信,也让这些问题不仅重要,而且必须直面:一切都会崩溃。 真正的问题不是信息需要时间从一个地方转移到另外一个地方的理论概念。真正的问题是在计算系统所有的物理世界中,组件经常会失败。在构建系统,尤其是在商用机器和网络上的分布式计算系统时,最常见的错误之一就是假定脱离了基本的物理现实。光速就是这样一种现实,但是另外一种更有害但是同样普遍的现实也是这样,我们无法制造出永远有不坏的完美机器,正是这些现实,异步性和部分失败的结合,使得构建分布式系统变得困难。如果我们不计划考虑单个组件的故障,我们可以保证组合系统的故障。 分布式系统理论中最重要的结果之一不是可能的结果,它显示了在可能发生故障的世界中构建系统的能力的局限性。这通常被称为FLP结果,以其作者Fischer, Lynch, 和 Paterson命名。它们的工作以分布式计算领域最具影响力的论文获得了2001年的Dijkstra奖。最终证明了一些计算问题在同步模型中是可能实现的,在同步模型中,主机拥有相同或者共享的时钟,这样的不可能结果非常重要,因为它们可以引导你在涉及自己的系统的时候避免走入死胡同。它们还可以提供一个snake-oil探测器。所以你有理由怀疑哪些声称产品做了你认为不可能的事情的人。 一个相关的结果是CAP定理,用于一致性、可用性和分区耐受性。现在的开放人员相对FLP更加熟悉它。首先由Eric Brewer非正式的提出,后来由Seth Gilbert 和 Nancy Lynch证明了它。从分布式理论系统角度来看,CAP定理没有FLP有趣,一个反例击败了CAP的正式版本,它假设了一个比FLP更弱,更具有对抗性的世界模型,并要求在该模型中实现更多。虽然一个问题并不是另一
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
1946 年情人节(2.14) , 世界上第一台电子数字计算机诞生在美 国宾夕法尼亚大学大学,它的名字是:ENIAC; 这台计算机占地 170 平米、重达 30 吨,每秒可进行 5000 次加法运算。 第一台电子计算机诞生以后,意味着一个日新月异的 IT 时代 的到来。一方面单台计算机的性能每年都在提升:从最早的 8 位 CPU 到现在的 64 位 CPU;从早期的 MB 级内存到现在的 GB 级别内存;从慢速的机械存储到现在的固态 SSD 硬盘存储。
OVN是Open Virtual Network的缩写,由一批热爱OpenFlow路线的工程师们创立。它实际上是对Neutron的SDN控制器进行了加强,复用OVS的转发功能实现的分布式SDN网络。
这是一篇比较分布式系统中服务器之间获得状态最终一致性也就是取得共识consensus几个流行算法,包括Paxos、Egalitarian Paxos、Hydra、Fast Paxos、Ios、VRR(Viewstamped Replication Revisited)、 Multi-Paxos、Raft等。 什么是共识consensus?当多个主机通过异步通讯方式组成网络集群时,这种异步网络默认是不可靠的,那么在这些不可靠主机之间复制状态需要采取一种机制,以保证每个主机的状态
简单来讲,它并不是解决对网络里面的是非的判断,而是说当我在网络中发生了两个可能会产生冲突的交易时候,我去选择哪一个,或者再换一句话说,如果有两个事实都是可以成立的时候,去选择哪一个,这是一个决策的机制,而不是判断是非的机制。
2000年7月,加州大学伯克利分校的Eric Brewer教授在ACM PODC会议上提出CAP猜想。2年后,麻省理工学院的Seth Gilbert和Nancy Lynch从理论上证明了CAP。之后,CAP理论正式成为分布式计算领域的公认定理。
微服务架构风格,就像是把一个单独的应用程序开发为一套小服务(在Java中或许可以直接说成是SpringBoot更易于你的理解),每个小服务运行在自己的进程中,并使用轻量级机制通信,通常是HTTP API。这些服务围绕业务能力来构建,并通过完全自动化部署机制来独立部署。这些服务使用不同的编程语言书写,以及不同数据存储技术,并保持最低限度的集中式管理。
这里提的日志并不是应用程序产生的日志,应用程序产生的日志是以一种人类读得懂的方式展示程序运行信息的记录方式,本身不包含任何数据,这篇文章所要描述的日志指的数据系统里的日志,它是一种只增不减,随时间有序的存储抽象。
在大数据系统中,分布式系统已经成为一个无法避免的组件,如zookeeper已经成为了工业届的标准。所以对于大数据的研究,也必须要研究分布式系统的特点。
设计一个分布式系统并不是那么简单和直接。为了得到理想的系统,需要克服许多挑战。分布式系统面临的主要挑战如下:
第一章主要介绍了计算机系统从集中式向分布式系统演变过程中面临的挑战,并简要介绍了ACID、CAP和BASE等经典分布式理论,主要包含以下内容:
我们在分布式开发中经常听到的一个词就是“服务治理”。在理解“服务治理”的概念之前让我们先理解什么是分布式系统,分布式系统之间如何通过RPC(Remote Procedure Call,远程过程调用)方式通信,以及如何解决RPC框架存在的问题,这样才能真正地理解服务治理的核心思想。
👆点击“博文视点Broadview”,获取更多书讯 我们在分布式开发中经常听到的一个词就是“服务治理”。在理解“服务治理”的概念之前让我们先理解什么是分布式系统,分布式系统之间如何通过RPC(Remote Procedure Call,远程过程调用)方式通信,以及如何解决RPC框架存在的问题,这样才能真正地理解服务治理的核心思想。 分布式系统 分布式系统指的是通过网络连接让多台计算机协同解决单台计算机所不能解决的计算、存储等问题,多台计算机之间通过 RPC 方式通信。在使用分布式系统前,首要解决的问题是如
我们在分布式开发中经常听到的一个词就是“服务治理”。在理解“服务治理”的概念之前让我们先理解什么是分布式系统,分布式系统之间如何通过RPC(Remote Procedure Call,远程过程调用)方式通信,以及如何解决RPC框架存在的问题,这样才能真正地理解服务治理的核心思想。 分布式系统 分布式系统指的是通过网络连接让多台计算机协同解决单台计算机所不能解决的计算、存储等问题,多台计算机之间通过 RPC 方式通信。在使用分布式系统前,首要解决的问题是如何拆解当前面临的问题。通过使用多台计算机分布式解决问题
简介:数据中心网络带宽持续增加,加之CPU性能提升缓慢,导致数据中心网络无法沿用过去的搭建方法;那么如何设计性能优异且与网络速度同步的高效能分布式系统呢?最近出现的可编程网络交换(PNF)是一种潜在的解决方案。
上面说这么多,总结一下,ZK 能解决分布式应用开发的问题,ZK 能很好的解决问题。到这一步,疑问就更多了:
Hello folks,我是 Luga,今天我们来聊一下云原生生态体系可观测性核心之——分布式追踪技术。
开源地址:https://github.com/sunshinelyz/mykit-lock
原文 : https://code.fb.com/video-engineering/oil-vcache/
在数据有多分副本的情况下,如果网络、服务器或者软件出现故障,会导致部分副本写入成功,部分副本写入失败。这就造成各个副本之间的数据不一致,数据内容冲突。 实践中,导致数据不一致的情况有很多种,表现样式也多种多样,比如数据更新返回操作失败,事实上数据在存储服务器已经更新成功。
微服务架构风格,就像是把一个单独的应用程序开发为一套小服务,每个小服务运行在自 己的进程中,并使用轻量级机制通信,通常是 HTTP API。这些服务围绕业务能力来构建, 并通过完全自动化部署机制来独立部署。这些服务使用不同的编程语言书写,以及不同数据 存储技术,并保持最低限度的集中式管理。
领取专属 10元无门槛券
手把手带您无忧上云