首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

内核调度器如何在计时器中断的情况下保持时间量程精度?

内核调度器在计时器中断的情况下保持时间量程精度的方法是通过使用抢占式调度和时钟中断。

抢占式调度是一种调度策略,它允许内核在任何时刻中断正在执行的任务,并将处理器分配给优先级更高的任务。当计时器中断发生时,内核会检查是否有更高优先级的任务需要执行,如果有,则会立即切换到该任务。这样可以确保高优先级任务及时得到处理,从而保持时间量程的精度。

时钟中断是一种硬件机制,它定期触发中断请求,以便内核可以进行调度。内核会设置一个定时器,当定时器计数达到预设值时,会触发时钟中断。在中断处理程序中,内核会更新任务的运行时间,并根据任务的优先级重新调度任务。通过定期触发时钟中断,内核可以及时检查任务的运行时间,保持时间量程的精度。

内核调度器的目标是尽可能公平地分配处理器时间给所有任务,并根据任务的优先级进行调度。通过抢占式调度和时钟中断,内核可以在计时器中断的情况下保持时间量程的精度,确保任务得到及时处理,并满足实时性要求。

腾讯云相关产品和产品介绍链接地址:

  • 云服务器(ECS):提供可扩展的计算能力,适用于各种应用场景。详情请参考:https://cloud.tencent.com/product/cvm
  • 云原生容器服务(TKE):基于Kubernetes的容器管理服务,简化容器化应用的部署和管理。详情请参考:https://cloud.tencent.com/product/tke
  • 云数据库MySQL版(CMYSQL):高性能、可扩展的关系型数据库服务,适用于各种规模的应用。详情请参考:https://cloud.tencent.com/product/cdb_mysql
  • 云存储(COS):安全可靠的对象存储服务,适用于存储和处理各种类型的数据。详情请参考:https://cloud.tencent.com/product/cos
  • 人工智能平台(AI Lab):提供丰富的人工智能算法和模型,帮助开发者快速构建智能应用。详情请参考:https://cloud.tencent.com/product/ai_lab
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Nano Transport:一种硬件实现的用于SmartNIC的低延迟、可编程传输层

    摘要:传输协议可以在NIC(网卡)硬件中实现,以增加吞吐量、减少延迟并释放CPU周期。如果已知理想的传输协议,那么最佳的实现方法很简单:直接将它烧入到固定功能的硬件中。但是传输协议仍在发展,每年都有提出新的创新算法。最近的一项研究提出了Tonic,这是一种Verilog可编程硬件传输层。我们在这项工作的基础上提出了一种称为纳米传输层的新型可编程硬件传输层架构,该架构针对主导大型现代分布式数据中心应用中极低延迟的基于消息的 RPC(远程过程调用)进行了优化。Nano Transport使用P4语言进行编程,可以轻松修改硬件中的现有(或创建全新的)传输协议。我们识别常见事件和基本操作,允许流水化、模块化、可编程的流水线,包括分组、重组、超时和数据包生成,所有这些都由程序设计员来表达。

    03

    蓝桥杯单片机必备知识—–(9)超声波测距

    超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。这就是所谓的时间差测距法。 超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。 测距的公式表示为:L=C×T 式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。 超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。 由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。在精密的液位测量中需要达到毫米级的测量精度,但是目前国内的超声波测距专用集成电路都是只有厘米级的测量精度。

    03

    《go 语言程序设计》读书笔记(六)Goroutine与系统线程的区别

    每一个OS线程都有一个固定大小的内存块(一般会是2MB)来做栈,这个栈会用来存储当前正在被调用或挂起(指在调用其它函数时)的函数的内部变量。这个固定大小的栈同时很大又很小。因为2MB的栈对于一个小小的goroutine来说是很大的内存浪费,比如对于我们用到的,一个只是用来WaitGroup之后关闭channel的goroutine来说。而对于go程序来说,同时创建成百上千个gorutine是非常普遍的,如果每一个goroutine都需要这么大的栈的话,那这么多的goroutine就不太可能了。除去大小的问题之外,固定大小的栈对于更复杂或者更深层次的递归函数调用来说显然是不够的。修改固定的大小可以提升空间的利用率允许创建更多的线程,并且可以允许更深的递归调用,不过这两者是没法同时兼备的。

    01

    waitforsingleobject的作用_效率理论

    Microsoft Windows 平台中两种最常用的锁定方法为 WaitForSingleObject 和 EnterCriticalSection 。WaitForSingleObject 是一个过载 Microsoft API ,可用于检查和修改许多不同对象(如事件、作业、互斥体、进程、信号、线程或计时器)的状态。Wa itForSingleObject 的一个不足之处是它会始终获取内核的锁定,因此无论是否获得锁定,它都会进入特权模式 ( 环路 0) 。此 API 还进入 Windows 内核,即使指定的超时为 0 ,亦如此。此锁定方法的另一不足之处在于,它一次只能处理 64 个尝试对某个对象进行锁定的线程。WaitForSingleObject 的优点是它可以全局进行处理,这使得此 API 能够用于进程间的同步。它还具有为操作系统提供锁定对象信息的优势,从而可以实现公平性及优先级倒置。 通过对关键代码段实施 EnterCriticalSection 和 LeaveCriticalSection API 调用,可以使用 EnterCriticalSection 。此 API 具有 WaitForSingleObject 所不具备的优点,因为只有存在锁定争用时,才会进入内核。如果不存在锁定争用,则此 API 会获取用户空间锁定,并且在未进入特权模式的情况下返回。如果存在争用,则此 API 在内核中所采用的路径将与 WaitForSingleObject 极其相似。 在低争用的情况下,由于 EnterCriticalSection 不进入内核,因此锁定开销非常低。 不足之处是 EnterCriticalSection 无法进行全局处理,因此无法为线程获取锁定的顺序提供任何保证。EnterCriticalSection 是一种阻塞调用,意味着只有线程获得对此关键区段的访问权限时,该调用才会返回。Windows 引入了 TryEnterCriticalSection ,TryEnterCriticalSection 是一种非阻塞调用,无论获得锁定与否都会立即返回。此外,EnterCriticalSection 还允许开发人员使用自旋计数对关键区段进行初始化,在回退前线程会按此自旋计数尝试获取锁定。通过使用 API InitializeCriticalSectionAndSpinCount ,完成初始化。自旋计数可以在此调用中进行设置,也可以在注册表中进行设置,以根据不同操作系统及其相应的线程量程对自旋进行更改。 如果存在锁定争用,则 EnterCriticalSection 和 WaitForSingleObject 都会进入内核。如果实现程度过高,从用户模式到特权模式的转换开销将会非常大。 EnterCriticalSection 和 WaitForSingleObject API 调用在对使用数千个周期的运算进行锁定时,通常不会影响性能。在这些情况下,锁定调用本身的开销不会如此突出。会导致性能降低的情况是粒度锁定,获得和释放此锁定要花费数百个周期。在这些情况下,使用用户级别锁定则非常有益。

    03
    领券