首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas vs Spark:获取指定列的N种方式

,此处用单个列名即表示提取单列,提取结果为该列对应的Series,若是用一个列名组成的列表,则表示提取多列得到一个DataFrame子集; df.iloc[:, 0]:即通过索引定位符iloc实现,与loc...:Spark中的DataFrame每一列的类型为Column、行为Row,而Pandas中的DataFrame则无论是行还是列,都是一个Series;Spark中DataFrame有列名,但没有行索引,...在Spark中,提取特定列也支持多种实现,但与Pandas中明显不同的是,在Spark中无论是提取单列还是提取单列衍生另外一列,大多还是用于得到一个DataFrame,而不仅仅是得到该列的Column类型...03 小结 本文分别列举了Pandas和Spark.sql中DataFrame数据结构提取特定列的多种实现,其中Pandas中DataFrame提取一列既可用于得到单列的Series对象,也可用于得到一个只有单列的...,常用的方法多达7种,在这方面似乎灵活性相较于Pandas中DataFrame而言具有更为明显的优越性。

11.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一道基础题,多种解题思路,引出Pandas多个知识点

    这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。...然后再看看这个explode函数,它是pandas 0.25版本才出现的函数,只有一个参数可以传入列名,然后该函数就可以把该列的列表每个元素扩展到多行上。...(itertools.product(k, v)) pd.DataFrame(result) 部分朋友可能没有看明白,这个就需要查询一下product方法的官方文档(https://docs.python.org...=4) 和 product(A, A, A, A) 的返回结果是一样的。...列表分列的2种方法 列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。

    1.2K20

    pandas | 使用pandas进行数据处理——DataFrame篇

    我们创建了一个dict,它的key是列名,value是一个list,当我们将这个dict传入DataFrame的构造函数的时候,它将会以key作为列名,value作为对应的值为我们创建一个DataFrame...从numpy数据创建 我们也可以从一个numpy的二维数组来创建一个DataFrame,如果我们只是传入numpy的数组而不指定列名的话,那么pandas将会以数字作为索引为我们创建列: ?...既然是dict我们自然可以根据key值获取指定的Series。 DataFrame当中有两种方法获取指定的列,我们可以通过.加列名的方式或者也可以通过dict查找元素的方式来查询: ?...总结 在今天的文章当中我们了解了DataFrame与Series的关系,也学习了一些DataFrame的基础和常用的用法。...在Python领域当中,pandas是数据处理最好用的手术刀和工具箱,希望大家都能将它掌握。

    3.5K10

    数据科学 IPython 笔记本 7.4 Pandas 对象介绍

    作为扩展的 NumPy 数组的Series 从目前来看,Series对象看起来基本上可以与一维 NumPy 数组互换。...与前一节中讨论的Series对象一样,DataFrame可以被认为是 NumPy 数组的扩展,也可以被认为是 Python 字典的特化。我们现在来看看这些观点。...作为扩展的 NumPy 数组的DataFrame 如果Series是具有灵活索引的一维数组的模拟,则DataFrame是具有灵活行索引和灵活列名的二维数组的模拟。...正如你可能将二维数组视为对齐的一维列的有序序列一样,你可以将DataFrame视为对齐的Series对象的序列。在这里,“对齐”是指它们共享相同的索引。...作为特化字典的DataFrame 同样,我们也可以将DataFrame视为字典的特化。 字典将键映射到值,DataFrame将列名称映射到列数据的Series。

    2.3K10

    Pandas 中文官档 ~ 基础用法4

    的索引与 DataFrame 的索引是同一个 Python 对象。...::: 重置索引,并与其它对象对齐 提取一个对象,并用另一个具有相同标签的对象 reindex 该对象的轴。这种操作的语法虽然简单,但未免有些啰嗦。...简言之,基础迭代(for i in object)生成: Series :值 DataFrame:列标签 例如,DataFrame 迭代时输出列名: In [245]: df = pd.DataFrame...Series 里的每一行数据,该操作不会保留每行数据的数据类型,因为数据类型是通过 DataFrame 的列界定的。...itertuples() 保存值的数据类型,而且比 iterrows() 快。 ::: tip 注意 包含无效 Python 识别符的列名、重复的列名及以下划线开头的列名,会被重命名为位置名称。

    3K40

    最全面的Pandas的教程!没有之一!

    你可以用逻辑运算符 &(与)和 |(或)来链接多个条件语句,以便一次应用多个筛选条件到当前的 DataFrame 上。举个栗子,你可以用下面的方法筛选出同时满足 'W'>0 和'X'>1 的行: ?...归并(Merge) 使用 pd.merge() 函数,能将多个 DataFrame 归并在一起,它的合并方式类似合并 SQL 数据表的方式。...假如你不确定表中的某个列名是否含有空格之类的字符,你可以通过 .columns 来获取属性值,以查看具体的列名。 ?...读取 CSV 文件 简单地说,只要用 pd.read_csv() 就能将 CSV 文件里的数据转换成 DataFrame 对象: ?...image 这里传入 index=False 参数是因为不希望 Pandas 把索引列的 0~5 也存到文件中。

    26K64

    Pandas 中文官档 ~ 基础用法4

    的索引与 DataFrame 的索引是同一个 Python 对象。...::: 重置索引,并与其它对象对齐 提取一个对象,并用另一个具有相同标签的对象 reindex 该对象的轴。这种操作的语法虽然简单,但未免有些啰嗦。...简言之,基础迭代(for i in object)生成: Series :值 DataFrame:列标签 例如,DataFrame 迭代时输出列名: In [245]: df = pd.DataFrame...Series 里的每一行数据,该操作不会保留每行数据的数据类型,因为数据类型是通过 DataFrame 的列界定的。...itertuples() 保存值的数据类型,而且比 iterrows() 快。 ::: tip 注意 包含无效 Python 识别符的列名、重复的列名及以下划线开头的列名,会被重命名为位置名称。

    2.4K20

    python数据科学系列:pandas入门详细教程

    、数据分析和数据可视化全套流程操作 pandas主要面向数据处理与分析,主要具有以下功能特色: 按索引匹配的广播机制,这里的广播机制与numpy广播机制还有很大不同 便捷的数据读写操作,相比于numpy...还是dataframe,均支持面向对象的绘图接口 正是由于具有这些强大的数据分析与处理能力,pandas还有数据处理中"瑞士军刀"的美名。...、切片访问、通函数、广播机制等 series是带标签的一维数组,所以还可以看做是类字典结构:标签是key,取值是value;而dataframe则可以看做是嵌套字典结构,其中列名是key,每一列的series...注意,这里强调series和dataframe是一个类字典结构而非真正意义上的字典,原因在于series中允许标签名重复、dataframe中则允许列名和标签名均有重复,而这是一个真正字典所不允许的。...两种数据结构作图,区别仅在于series是绘制单个图形,而dataframe则是绘制一组图形,且在dataframe绘图结果中以列名为标签自动添加legend。

    15.1K21

    整理了 25 个 Pandas 实用技巧,拿走不谢!

    这种方式很好,但如果你还想把列名变为非数值型的,你可以强制地将一串字符赋值给columns参数: ? 你可以想到,你传递的字符串的长度必须与列数相同。 3....如果你对你的DataFrame有操作方面的问题,或者你不能将它读进内存,那么在读取文件的过程中有两个步骤可以使用来减小DataFrame的空间大小。...解决的办法是使用transform()函数,它会执行相同的操作但是返回与输入数据相同的形状: ? 我们将这个结果存储至DataFrame中新的一列: ?...该DataFrame包含了与MultiIndexed Series一样的数据,不同的是,现在你可以用熟悉的DataFrame的函数对它进行操作。 22....Style a DataFrame 上一个技巧在你想要修改整个jupyter notebook中的显示会很有用。但是,一个更灵活和有用的方法是定义特定DataFrame中的格式化(style)。

    3.2K10

    python数据分析——数据分类汇总与统计

    : size计数时包含NaN值,而count不包含NaN值。...如果不想接收GroupBy自动给出的那些列名,那么如果传入的是一个由(name,function)元组组成的列表,则各元组的第一个元素就会用作DataFrame的列名(可以将这种二元元组列表看做一个有序映射...) 对于DataFrame,你可以定义一组应用于全部列的一组函数,或不列应用不同的函数。...首先,编写一个选取指定列具有最大值的行的函数: 现在,如果对smoker分组并用该函数调用apply,就会得到: top函数在DataFrame的各个片段调用,然后结果由pandas.concat...由于分组具有一个name属性,所以我们可以拿来用一下: 四、数据透视表与交叉表 数据透视表 pivot()的用途就是,将一个dataframe的记录数据整合成表格(类似Excel中的数据透视表功能),pivot_table

    15210

    Pandas数据合并:concat与merge

    二、concat的基本用法(一)概述concat函数用于沿着一个特定的轴(行或列)将多个Pandas对象(如DataFrame或Series)连接在一起。...它是一种简单的拼接方式,适用于多种场景,例如将不同时间段的数据纵向堆叠,或者将具有相同索引的不同特征横向拼接。(二)参数解析objs:要连接的对象列表,可以是DataFrame或Series。...(三)案例分析假设我们有两个关于学生成绩的DataFrame,分别记录了语文成绩和数学成绩,且它们具有相同的索引(学生编号)。我们可以使用concat将其横向拼接。...对于concat,可以通过选择特定的列或者重命名列来避免。对于merge,使用sufixes参数可以很好地解决这个问题。...(二)ValueError有时可能会遇到ValueError,这可能是由于数据类型不匹配、索引不一致等原因引起的。仔细检查数据源,确保数据的完整性和一致性,按照前面提到的方法解决相关问题。

    15010

    Pandas 2.2 中文官方教程和指南(一)

    =,具有与原始DataFrame相同行数的布尔值(True 或 False)的 pandas Series。...使用loc选择特定行和/或列时,请使用行和列名称。 使用iloc选择特定行和/或列时,请使用表中的位置。 您可以基于loc/iloc分配新值给选择。...请记住,DataFrame是二维的,具有行和列两个维度。 转到用户指南 有关索引的基本信息,请参阅用户指南中关于索引和选择数据的部分。 如何从DataFrame中筛选特定行?...=, 的 pandas Series(True 或 False)与原始 DataFrame 行数相同。...使用loc选择特定行和/或列时,请使用行和列名称。 使用iloc选择特定行和/或列时,请使用表中的位置。 您可以根据loc/iloc的选择分配新值。

    98810

    pandas学习-索引-task13

    通过 [列名] 可以从 DataFrame 中取出相应的列,返回值为 Series ,例如从表中取出姓名一列:  df = pd.read_csv("E:/document/python学习笔记/pandas...] ,其返回值为一个 DataFrame ,例如从表中取出性别和姓名两列: df[['Grade','Name']].head() 此外,若要取出单列,且列名中不包含空格,则可以用 .列名 取出,这和...= "Senior")&'          ' (Weight > 80))') 在 query 表达式中,帮用户注册了所有来自 DataFrame 的列名,所有属于该 Series 的方法都可以被调用...为了更加清晰地说明具有多级索引的 DataFrame 结构,下面新构造一张表,读者可以忽略这里的构造方法,它们将会在第4小节被更详细地讲解。 ...与单层索引类似, MultiIndex 也具有名字属性,图中的 School 和 Gender 分别对应了表的第一层和第二层行索引的名字, Indicator 和 Grade 分别对应了第一层和第二层列索引的名字

    92400

    Python数据分析之pandas基本数据结构

    索引(index):与一维数组值一一对应的标签。利用索引,我们可非常方便得在Series数组中进行取值。...与Series类似,DataFrame数组也有一个index索引,在不指定索引时,通常会自动生成从零开始步长为1的索引。...此外DataFrame数组还有一个列名,索引和列名是从数组中挑选数据的重要依据。...3.2 创建DataFrame数组 (1)通过字典创建 通过字典来创建DataFrame数组时,字典的键将会自动成DataFrame数组的列名,字典的值必须是可迭代对象,例如Series、numpy数组...B 4 5 6 3.3 DataFrame数组的常用属性 DataFrame数组的属性与Series数据几乎一样,只是多了一个保存列名信息的columns属性,参看上面表格中的Series属性就行了。

    1.2K10

    python数据分析——数据的选择和运算

    Pandas数据选择 Series数据获取 s = pd.Series(data = [1,2,3,4,5,6],index = ['a','c','b','a','b','b']) s['a'] DataFrame...类似于sql中的on用法。可以不指定,默认以2表中共同字段进行关联。 left_on和right_on:两个表里没有完全一致的列名,但是有信息一致的列,需要指定以哪个表中的字段作为主键。...axis表示选择哪一个方向的堆叠,0为纵向(默认),1为横向 【例】实现将特定的键与被切碎的数据帧的每一部分相关联。...关键技术:可以利用count()方法进行计算非空个数,并利用参数axis来控制行列的计算,程序代码如下所示: 【例】对于上述数据集product_sales.csv,若需要特定的列“线上销售量"...关键技术:可以利用标签索引和count()方法来进行计数,程序代码如下所示: 【例】对于上述数据集product_sales.csv,若需要特定的行进行非空值计数,应该如何处理?

    19310

    Pandas0.25来了,别错过这10大好用的新功能

    命名聚合还支持 Series 的 groupby 对象,因为 Series 无需指定列名,只要写清楚要应用的函数就可以了。...精简显示 Series 与 DataFrame 超过 60 行的 Series 与 DataFrame,pandas 会默认最多只显示 60 行(见 display.max_rows 选项)。...因此,0.25 版引入了 display.min_rows 选项,默认只显示 10 行: 数据量小的 Series 与 DataFrame, 显示 max_row 行数据,默认为 60 行,前 30 行与后...30 行; 数据量大的 Series 与 DataFrame,如果数据量超过 max_rows, 只显示 min_rows 行,默认为 10 行,即前 5 行与后 5 行。...增加 explode() 方法,把 list “炸”成行 Series 与 DataFrame 增加了 explode() 方法,把 list 形式的值转换为单独的行。

    2.2K30
    领券