首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据分析】一位电商数据分析师的经验总结

    就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员流失;利用会员的购买数据,挖掘会员的潜在需求,提供销售,扩大影响力等等。   最开始进公司的时候是在运营部,主要是负责运营报表的数据,当时的系统还很差,提取数据很困难,做报表也很难,都是东拼西凑一些数据,然后做成PPT,记得当时主要的数据就是销

    06

    无细分,毋宁死:电子商务数据分析三年工作总结

    08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需要感谢的人很多,他们无私的教给了我很多东西。 就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员

    07

    【新闻】腾讯联手IBM:用大数据开创世界杯报道新模式

    昨日,IBM与腾讯达成深度战略合作,成为腾讯体育社交媒体数据分析合作伙伴。双方将针对包括2014巴西世界杯在内的一系列体育赛事报道开展深入的合 作,通过IBM大数据分析、云计算等领先技术能力提供社交和移动等数据分析支持,为用户打造全新的体育观赛体验。双方此次合作是大数据在实际应用层面上的 一次重要落地,同时也是腾讯作为网络媒体在世界杯报道模式上的有效创新。 此次合作中,IBM将根据网友和球迷在腾讯网络媒体平台及社交网络上发布的海量公开信息及数据,进行精准的大数据分析,获得关于球迷话题、球迷类型、球迷个

    012

    【法律专题】大数据解读2014年中国裁判文书公开之(一)

    点击标题下「大数据文摘」可快捷关注 法律大数据专题文章计划: 《大数据解读2014年中国裁判文书公开》为本次系列文章的主题,本文通过业界成熟大数据技术,希望对公开裁判文书分析、统计,从而对裁判文书公开情况量化评估。本系列文章具有尝试研究性质,文章的数据全部来自互联网全网公开数据,所得结论仅用于研究讨论目的,本文的评价依据均来自数据,不代表本文作者及作者所在机构立场。 本文为之(一),主要内容是对2014年全国及关注热点地区的裁判文书总体公开效果进行量化分析;专题之(二)通过大数据分析2014年全国民事案

    08

    手把手,我写了一份数据分析需求沟通模板

    作为数据分析师最怕什么?莫过于下午5:55分,自己正准备收拾包包走人,一个电话飞进来:“歪!帮忙跑个数,我们总监要,今天无论多晚都得给!”听完这通话,心情直接跌入谷底。 如果有比这还可怕的,就是晚上11:00,你累死累活跑出来数了,对方一句:“哦,好像不是这个数,你换另一个跑法试试,还是今天无论多晚都得给哦……” 如何避免这种问题呢? 数据分析的需求沟通 这个问题显然是出在需求沟通上。没有沟通清楚需求就动手,自然会来来回回返工。不但自己做得辛苦,业务部门也不满意。所以沟通需求很重要。而数据分析是有标准的需求

    02

    【观点】数据分析之如何用数据?

    光知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来。最后总结下来有这么几个部分。 第一个部分,是看历史数据,发现规律。 以社区中的活动和电商中的促销为例,这些都是常见的活动,活动做得好的话有意想不到的效果。在做这样的活动,最好是拿到前一个月或者两个月的历史数据。对电商来说,从这里面要去分析各个品类的销售情况,那个品类销量最大,那个品类销量最小,每月或者每周的平均增长率和符合增长率是多少。通过原始数据把上面的这些指标分析出来之后,就可以看到哪些品类是优势品类,

    03

    干货|数据分析之如何用数据?

    光知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来。最后总结下来有这么几个部分。 第一个部分,是看历史数据,发现规律。 以社区中的活动和电商中的促销为例,这些都是常见的活动,活动做得好的话有意想不到的效果。在做这样的活动,最好是拿到前一个月或者两个月的历史数据。对电商来说,从这里面要去分析各个品类的销售情况,哪个品类销量最大,哪个品类销量最小,每月或者每周的平均增长率和复合增长率是多少。通过原始数据把上面的这些指标分析出来之后,就可以看到哪些品类是优势品类,

    09
    领券