首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Dropout大杀器已过时?视网络模型而定!

    人工智能和深度学习很火,对应的职位其薪水和前景都很不错。很多人想转行从事这方面的研究,大部分都是靠自学相关的知识来进行入门和提升。网络上有很多资源可以用来学习深度学习相关的内容。但不幸的是,大多数资源在建立模型时候很少解释为什么这样构造会取得较好的效果,其根本原因在于目前深度学习相关的理论类似于一个黑匣子,暂时无法解释得清楚,只能通过实验来证明。此外,随着相关的深入研究,会出现一些新的发现,进而解释之前无法解释的内容。 深度学习相关的知识更新的特别快,需要时常关注相关的进展。本文将讨论深度学习中的一种常用技术——Dropout,通过阅读此文,你将清楚为什么Dropout在卷积神经网络模型中不再受到欢迎。

    03

    Milvus开源向量搜索引擎,轻松搭建以图搜图系统

    当您听到“以图搜图”时,是否首先想到了百度、Google 等搜索引擎的以图搜图功能呢?事实上,您完全可以搭建一个属于自己的以图搜图系统:自己建立图片库;自己选择一张图片到库中进行搜索,并得到与其相似的若干图片。 Milvus 作为一款针对海量特征向量的相似性检索引擎,旨在助力分析日益庞大的非结构化数据,挖掘其背后蕴含的巨大价值。为了让 Milvus 能够应用于相似图片检索的场景,我们基于 Milvus 和图片特征提取模型 VGG 设计了一个以图搜图系统。 正文分为数据准备、系统概览、 VGG 模型、API 介绍、镜像构建、系统部署、界面展示七个部分。数据准备章节介绍以图搜图系统的数据支持情况。系统概览章节展示系统的整体架构。 VGG 模型章节介绍了 VGG 的结构、特点、块结构以及权重参数。 API 介绍章节介绍系统的五个基础功能 API 的工作原理。镜像构建章节介绍如何通过源代码构建客户端和服务器端的 docker 镜像。系统部署章节展示如何三步搭建系统。界面展示章节会展示系统的搜索界面。

    07

    深度学习系列(二)卷积神经网络模型(从LeNet-5到Inception V4)

    卷积神经网络上目前深度学习应用在图像处理和自然语言处理的非常具有代表性的神经网络,其经历了不断的优化发展,性能越来越强。在图像处理、计算机视觉领域的应用包括图像特征提取、目标分类、目标分割、目标识别等。相比于传统的神经网络需要将一定的特征信息作为输入,卷积神经网络可以直接将原始图像或经过预处理之后的图像作为网络模型的输入,一个卷积神经网络通常包括输入输出层和多个隐藏层,隐藏层通常包括卷积层和RELU层(即激活函数)、池化层、全连接层和归一化层等。卷积神经网络中有三个基本的概念:局部感受野(Local Receptive Fields)、共享权值(Shared Weights)、池化(Pooling)。 (1)局部感受野。对于全连接式的神经网络,图像的每一个像素点连接到全连接的每一个神经元中,造成大量的计算量,而卷积神经网络则是把每一个卷积核的点只连接到图像的某个局部区域,从而减少参数量。 (2)共享权值。在卷积神经网络的卷积层中,神经元对应的权值是相同的,由于权值相同,因此可以减少训练的参数量。 (3)池化。类似于人的视觉观察物体原理,关注点由大到小,首先输入图像往往都比较大,在卷积过程中通过不断提取特征,并且经过池化操作来对图像进行缩小,同时提取低阶和高阶的抽象特征信息。 卷机的原理和各种卷积的变种在之前的文章里提过。(深度学习系列(一)常见的卷积类型)

    03

    [Intensive Reading]目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN

    目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

    02

    AD分类论文研读(1)

    原文链接 摘要 将cv用于研究需要大量的训练图片,同时需要对深层网络的体系结构进行仔细优化。该研究尝试用转移学习来解决这些问题,使用从大基准数据集组成的自然图像得到的预训练权重来初始化最先进的VGG和Inception结构,使用少量的MRI图像来重新训练全连接层。采用图像熵选择最翔实的切片训练,通过对OASIS MRI数据集的实验,他们发现,在训练规模比现有技术小近10倍的情况下,他们的性能与现有的基于深层学习的方法相当,甚至更好 介绍 AD的早期诊断可以通过机器学习自动分析MRI图像来实现。从头开始训练一个网络需要大量的资源并且可能结果还不够好,这时候可以选择使用微调一个深度网络来进行转移学习而不是重新训练的方法可能会更好。该研究使用VGG16和Inception两个流行的CNN架构来进行转移学习。结果表明,尽管架构是在不同的领域进行的训练,但是当智能地选择训练数据时,预训练权值对AD诊断仍然具有很好的泛化能力 由于研究的目标是在小训练集上测试转移学习的鲁棒性,因此仅仅随机选择训练数据可能无法为其提供表示MRI足够结构变化的数据集。所以,他们选择通过图像熵提供最大信息量的训练数据。结果表明,通过智能训练选择和转移学习,可以达到与从无到有以最小参数优化训练深层网络相当甚至更好的性能 方法 CNN的核心是从输入图像中抽取特征的卷积层,卷积层中的每个节点与空间连接的神经元的小子集相连,为了减少计算的复杂性,一个最大池化层会紧随着卷积层,多对卷积层和池化层之后会跟着一个全连接层,全连接层学习由卷积层抽取出来的特征的非线性关系,最后是一个soft-max层,它将输出归一化到期望的水准 因为小的数据集可能会使损失函数陷入local minima,该研究使用转移性学习的方法来尽量规避这种情况,即使用大量相同或不同领域的数据来初始化网络,仅使用训练数据来重新训练最后的全连接层 研究中使用两个流行的架构: VGG16

    04
    领券