数据分析从业这么多年,既有庆幸也有焦虑,庆幸的是能进入互联网行业,吃到行业红利从而有一个较高的起薪,焦虑的是数据分析的门槛并不高,而且有明显的职场天花板。
如果你正好是一名BI数据分析师或者在准备当BI数据分析师的路上,当你看到这个标题时可能就会开始各种不满,淡定!先稍安勿躁,咱先聊聊为什么我会这么说,如果你有其他异议,欢迎在评论区提出!
数据分析和数据挖掘是数据从业者非常关注的两个岗位。这两个岗位到底有哪些区别?常听人说数据分析偏业务、偏前台,而数据挖掘偏技术,偏后台。所以要早点选定一个方向进行深耕才行?
【摘要】数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。< span>< span>< span>< span> 数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。在此,数据分析工作越来越受到各界的青睐。被《HR管理世界》评为七大赚钱行业之一,也被视为我国21世纪的黄金职业。在这样的背景下,有些网友想进入到数据分析行业,但对如何规划自己的职业之路比较迷茫。这里我谈谈自己的一些浅显理解,与大家切磋。 这个话题可以
现在有关数据分析的文章满天飞,很多小伙伴好奇:到底数据分析是做什么的?今天小熊妹给大家捋一捋,就拿几个大家常问的问题举例吧。
这个层面追求数据的准确性,一般以静态的数据为主,主要操作是数据的录入和记录,是HR每天的基础的数据工作,比如 员工花名册,公司人员结构,每天招聘人员数据的记录,这些都是属于操作层面,对于这个层面的要求就是要准确,当老板问你公司有多少人,每个月入职多少人,离职多少人等这些静态数据的时候,你都可以准确的回答。
都了年底我们开始做各个模块的数据分析,在人力资源各个模块的分析中,薪酬属于比较专业并且还是有点难度的数据分析模块,我们看到的很多HR在年底对薪酬的分析,基本都是集中在静态的薪酬数据分析,一般会对年度的薪酬做数据性的描述,并且在薪酬数据分析的呈现上都是从公司整体的宏观数据来做分析,如果要聚焦到部门,岗位,层级,在这些数据的展示上就需要跟过的PPT页面来做呈现,在数据的交互和数据展示上逻辑性比较的弱。
到了年底很多的HR开始做年终的数据分析总结报告,但是很多人的数据分析报告都局限在数据的描述上,没有对数据进行诊断和给与解决方案,并且在数据的呈现上都是以表格和基础的图表为主,没有进行多维度的数据分析。
导读:只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,本文为你一一道来数据分析岗的功能目的,以及组建方式,干货满满,诚意推荐! 数据分析行业现在大热,只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,还有更多的创业者更是不知道是否应该去组建一支数据分析团队,在什么时机组建?又以何种方式组建?本文为你一一道来。干货满满,诚意推荐! 这篇文章的作者是 Instacart数据分析副总裁 Jeremy Stanly
数据分析逻辑是整个人力资源数据分析过程中最核心的一个环节。我们在学习数据分析的过程中,一些软性的技能我们可以通过线上学习或者跟随老师的操作,反复的操作就可以学会,比如EXCEL的技能,这些都是数据技能类的知识。但是思维的养成和改变确实最难的,数据分析的思维需要你在真实的工作场景中,通过真实的案例的学习,积累数据分析的经验,养成数据分析的思维。所以数据分析的思维是不断学习积累的过程。
相信很多数据分析师的脑海中都无数次冒出过这个念头:出去开一个数据分析公司吧,喏,就像他们: 房地产数据分析师 · 张先生:我要创业!开一家数据分析的公司,什么万科、万达、万通、万维网....都是我的客户!喂,什么?哦不好意思我不买房,等一下,那个...请问您需要数据分析吗?我们专注房地产数据分析,聚类分析、回归分析、决策...喂?喂? 零售业数据分析师 · 小王:老子不干了!老子要自己接活做,给楼下小卖部做数据分析! 互联网数据分析师 · 强强:我辞职了,开了一家公司,我们公司做流量分析、推荐系统,构建
数据分析在各行各业的应用 计算机、金融、财务会计、医药专业、艺术专业、语言类专业、法律专业、设计、电商 相信很多人都听到过不少次数据分析这一词,而数据分析这个次近几年来随着互联网的快速发展,成为商业世界中的流行语 很多具有远见卓识的公司很早就已经开始去“智能地使用数据”,来收集用户行为画像,对业务进行风险分析或者是对企业进行更有效地管理 一般来说越是大型的,数据丰富的公司,尤其是那些会有严格监管的大型公司,多年来一直从事以数据为主导的决策 企业为更好地了解其客户而进行的数据分析先驱-随后的数据分析被用于开展针对性强的目标有影响力的营销活动,来引导企业进行更快速的成长, 下面开门见山带大家看一下数据分析岗位所在的典型行业
经常被问到一个问题,数据分析师或者数据挖掘工程师面试都问什么问题啊?特别是以下几类人群:
数据工作中有一类非常重要的角色,那就是数据分析师。为什么这个角色这么重要呢?因为要是没有这个角色,不管一个企业中的数据管理做得有多么好都没用,都无法带来实际的价值。这些数据就像是藏在海底的石油,而数据分析师就是开采海底石油的油井设备。要想让石油用于汽车轮船,需要通过这些设备先将海底的石油抽取出来,经过加工处理,提纯。
众所周知,数据分析师有两个发展方向,一个是商业数据分析师,一个就是数据挖掘工程师。
导读:只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,本文为你一一道来数据分析岗的功能目的,以及组建方式,干货满满,诚意推荐! 数据分析行业现在大热,只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,还有更多的创业者更是不知道是否应该去组建一支数据分析团队,在什么时机组建?又以何种方式组建?本文为你一一道来。干货满满,诚意推荐! 这篇文章的作者是 Instacart数据分析副总裁 Jeremy Stanly 以
数据分析在保险行业的运用 由于客户的价值我们可能直接无法得到,这可能需要通过客户的属性信息或行为信息来判断。所以通过客户数据来判断客户价值,进行客户价值管理是未来的趋势,而数据分析就是这一方法的重要技术手段。现在数据分析可以说在商业中的应用越来越广泛,尤其是在互联网、通讯、金融、零售业中的应用,自上世纪数据分析技术在美国应用以来,现在已推广到全世界更多的行业之中。上世纪90年代末数据分析这一概念随着沃尔玛啤酒与尿布的典型案例来到中国来。那么数据分析技术在国内应用如何呢?在保险行业的应用又会如何呢? 一、数据
数据分析的的最终呈现的形式是数据分析报告,我们通过数据的数透,数据的汇总,在通过数据的可视化数据仪表盘,然后对数据图表结合公司业务和发展进行分析,最终以PPT或者WPRD的形式进行数据报告的呈现,在这些工作中,对大家来说,可能做数据报告比较化时间,我无数次听很多HR的小伙伴在群里说秋季度年度数据分析报告的模板。你下载过来的模板几乎是没用的,因为每个公司的情况不一样,你肯定是需要进行修改个更新,但是如果你不懂数据分析报告的设计和一些EXCEL的数据技能,你就不能做出一个很好的数据报告。
该图是数据分析概述部分。主要讲述了一个数据分析人应该具备哪些基本素质?有哪些职业要求?同时也讲述了数据分析的一些常用指标和述语,有哪些数据分析的类型,数据分析有什么作用,以及我们做数据分析有哪些主要流程。
现在随着数据分析在各行各业的广泛应用,各种数据分析的工具软件也层出不穷,现在行业里主流的有python, 微软的BI软件 ,Tableau, Excel 等。
我做了两份简历,用两个手机账号,两个简历名字,分别在各个招聘网站投了双份简历,一个是数据分析的简历、一个是web全栈开发的简历,我真正接触python快2年,不管是学习还是工作学到的东西,这两年大概掌握了(前端+django+爬虫+数据分析+机器学习+NLP+Linux)技术,技术水平自我评价一般,够日常一般使用,基于自己掌握的技术可以分成2方面,web和数据分析,所以为了尽快找到工作,就做了web全栈开发+数据分析(含爬虫)2份简历,同时投递
经常被问到一个问题,数据分析师或者数据挖掘工程师面试都问什么问题啊?特别是以下几类人群: 1、想转行做数据分析工作的朋友。 2、之前在比较小的公司做数据分析师,去大公司面试。 3、在校大学生。 在回答这些问题之前,先谈我的一个面试经历,记得之前我在一家小公司做数据分析师的时候,有朋友推荐我去一家大公司去面试数据分析师。当时我也在想,在面试大公司的数据分析师一定会问: 1、你做过哪些模型? 2、用什么工具做的啊? 3、你会或者知道哪些算法啊? 4、数据量有多大? ....... 但是当我去沟通下来的时候,
临近年底,很多同学问:“如何做出优秀的数据分析项目?不然年终总结都不知道咋写”。今天系统回答一下。想做好数据分析类项目,主要靠的是:树立正确的观念。这里有5道测试题,一起来测一测自己有多大可能做出好项目。
最近听到大家说的最多的话就是,在工作中总是没有数据分析思路,我应该怎么办呢?今天就来给大家分享一下,如何锻炼自己的数据思维,还有实例模型讲解哦~
具有从大数据分析及数据科学中获取独特见解的公司,可以拥有关键信息优势,从而在第四次工业革命(也称为数字时代)中蓬勃发展。
大数据催生数据分析师 薪酬比同等级职位高20% 随着大数据在国内的发展,大数据相关人才却出现了供不应求的状况,大数据分析师更是被媒体称为“未来最具发展潜力的职业之一”。大数据分析师是做什么的?阿里巴巴集团研究员薛贵荣就曾表示,“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。有媒体报道,在美国,大数据分析师平均每年薪酬高达17.5万美元,而国内顶尖互联
人们对大数据兴趣激增,数据分析团队也显得供不应求。大数据能让企业变得更有效率,提升整体的竞争力。具备高级数据分析能力的公司已经找到了构建长期优势的方法。例如联邦快递在过去几年里就已经靠内部的专业数据分
人们对大数据兴趣激增,数据分析团队也显得供不应求。大数据能让企业变得更有效率,提升整体的竞争力。具备高级数据分析能力的公司已经找到了构建长期优势的方法。例如联邦快递在过去几年里就已经靠内部的专业数据分析团队强化了收入、减少了成本,从而创造并保持了竞争优势。沃尔玛能成为全球最大、最成功的零售商,也和它强大的数据分析能力密不可分。 不过,组建数据分析团队并非易事。首先,许多公司内部缺乏相关的知识与经验,无法组建数据分析团队。另外,数据分析专业人士的市场需求也日益增加。《财富》杂志最近报道,“根据对人才市场的统
人们对大数据兴趣激增,数据分析团队也显得供不应求。大数据能让企业变得更有效率,提升整体的竞争力。具备高级数据分析能力的公司已经找到了构建长期优势的方法。例如联邦快递在过去几年里就已经靠内部的专业数据分析团队强化了收入、减少了成本,从而创造并保持了竞争优势。沃尔玛能成为全球最大、最成功的零售商,也和它强大的数据分析能力密不可分。 不过,组建数据分析团队并非易事。首先,许多公司内部缺乏相关的知识与经验,无法组建数据分析团队。另外,数据分析专业人士的市场需求也日益增加。《财富》杂志最近报道,“根据对人才市场的
在大数据和人工智能行业,有众多与数据相关的岗位,名目繁多:数据分析师、数据产品经理、数据挖掘工程师、大数据工程师、数据开发工程师、机器学习工程师、算法工程师、NLP算法工程师、数据科学家等等。很多应届生或准备转行的朋友面对如此多的岗位名称,都会傻傻分不清楚。本文将这些数据相关的职位分为三类:数据分析师、大数据工程师和算法工程师,并从工作内容和技能要求来做一下分析,帮助新入行朋友选择适合自己的岗位。这里我暂且不谈最顶级的数据科学家,这部分人均为名校博士,全世界可能只有几千个,他们可以轻轻松松年薪百万,是整个食物链的最顶层。他们不需要找工作,都是工作在找他们。
阅读建议:本文相对基础,适合准备/刚刚从事数据分析的同学,以及会用到数据分析的产品/运营/研发等同学。对于资深的数分大佬,可以回味一下刚刚入职时候的感受。
导读:我们坚信,未来是大数据的时代,而数据分析师,就是走在时代前端的人。别把时间花费在低产出的数据整理和清洁上面,善于利用工具,朝向正确的方向努力,一定可以在成长道路上走得更快更远。 作者:陈明,GrowingIO 联合创始人&运营副总裁 直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。 家人:“数据分析?分析什么东西?” 我:“哪里有数据,哪里就有我们,什么都可以分析。” 家人:“是软件工程师吗?会编程吗?” 我:“...不是,不太会。” 家人:“那是管理层吗?” 我
Froc寄语:数据分析师(或者时髦一些的说法是数据科学家),是公司不可或缺的重要组成人员,一家缺失数据分析师的公司,至少说明这家公司缺少数据驱动的意识,在未来竞争中,一定处于被动。一直以来,我致力于推进数据化运营,而数据化运营需要解决几个核心问题:
人效数据分析是人力资源数据分析里最能体现人力资源价值的一个分析模块,也是老板最关注的一个数据指标,因为这个指标是和公司的财务关联在一起的,通过人效的数据分析和对比,我们可以看出公司的人力成本在行业是否有竞争力,人员的调薪和人员的编制是否需要调整,这些都是通过人力成本和人效的数据分析得出来的。
顶级的数据分析师一定会在数据变现最牛逼的行业里存在,比如金融风控或者数字广告行业,这些业务是真正的数据驱动,因为数据上差一点点,效益就会差一大截。
1、如何做好数据分析? 分析师成长是通过“干”、"思"、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边总结,只有这种你才能沉淀。熬:通过时间的积累,你
要做一名优秀数据分析师,首先对数据分析岗位有基本的概念,其次,要明白数据分析中有哪些套路和方法,如此,才能举一反三,才能不同场景数据分析切换自如。下面我们高屋建瓴,抽茧剥丝般讲讲数据分析四大要素。
其实销售并不是大家想的那样,在路边向陌生人推销东西,互联网公司的销售对数据的依赖比我们想象的要大得多。提高销售人员拜访效率的秘密武器就是对庞大的客户群产生的数据进行分析,进行用户画像,从而有针对性的拜访,很多大公司的销售支持岗位明确要求有数据分析能力。
除了家人朋友,很多时候,同公司内部的人也会比较困惑,数据分析师究竟是做什么的。收集数据、整理数据表、做各种报表、写ppt、做挖掘模型、打小报告
我小时候的理想是将来做一名数学家,可惜长大了发现自己天赋不够,理想渐行渐远,于是开始考虑现实,开始做一些人生规划,我一直在思考将来从事何种职业,专注什么样的领域,重新定义着自己的职业理想。我现在的职业理想,比较简单,就是做一名数据分析师。 1为什么要做数据分析师? 在通信、互联网、金融等这些行业每天产生巨大的数据量(长期更是积累了大量丰富的数据,比如客户交易数据等等),据说到2020年,全球每年产生的数据量达到3500万亿GB;海量的历史数据是否有价值,是否可以利用为领导决策提供参考依据?随着软件工具、
首先,面试的开头就是自我介绍。通常面试官也会根据你的自我介绍来展开问后面的问题。比如你在自我介绍种说了一个项目,那面试官就问这个项目的细节,比如你用了什么技术,如何实现某个功能的等等。通过项目的细节来考察你某个方面的能力,因此,自我介绍非常重要。
我们在上篇公众号里和大家分享了关于组织结构和人员离职应该如何来做数据建模,并且用可视化的形式进行数据的呈现,对人力资源进行数据化的管理,建立数据体系,今天我们来聊一聊 在年底培训模块,我们如何用POWER BI 来做数据的分析。
我小时候的理想是将来做一名数学家,可惜长大了发现自己天赋不够,理想渐行渐远,于是开始考虑现实,开始做一些人生规划,我一直在思考将来从事何种职业,专注什么样的领域,重新定义着自己的职业理想。我现在的职业理想,比较简单,就是做一名数据分析师。 为什么要做数据分析师? 在通信、互联网、金融等这些行业每天产生巨大的数据量(长期更是积累了大量丰富的数据,比如客户交易数据等等),据说到2020年,全球每年产生的数据量达 到3500万亿GB;海量的历史数据是否有价值,是否可以利用为领导决策提供参考依据?随着软件工具、数据
POWER Bi 的软件操作相对来说只要你掌握了EXCEL的数据他透视和一些基础函数就会很容易上手POWER BI,所以现在有很多的PB的课程,专门来讲解PB的一些基础的操作的课程。
文 | 陈明 一个工作了5-6年的数据分析师,是如何改变比码农还惨的人生?谨以此文向每一位奋斗在一线的数据分析师致敬! 直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。 家人:“数据分析?分析什么东西?” 我:“哪里有数据,哪里就有我们,什么都可以分析。” 家人:“是软件工程师吗?会编程吗?” 我:“...不是,不太会。” 家人:“那是管理层吗?” 我:“还...还不到级别。” 家人:“那是商务人员?做市场或销售。” 我:“...也不是,不过我们辅助他们作决策。” 家人:“决策不
作者 CDA 数据分析师 『写在前面』 “每个人都需要具备数据分析能力”当被问及对数据分析的理解时,王武佳老师这样说到。 『人物介绍』 云幕后创始人 王武佳 2005年毕业于上海财经大学统计学,从事
作者@小强me 认为新手总觉得数据分析是一件超级复杂,技术含量极高的事情。他们总关心一些专业词汇,图表怎么做,excel工具怎么用,结论怎么写…作者强调文中所说的都是游戏的数据分析,因此别以为大数据什
经常有网友会对数据分析方面有一些困惑,并且咨询我该怎么办?并且经常是同样的问题,所以觉得有必要对一些经典共性的问题进行整理,与大家分享,这里并非标准答案,仅作参考! 欢迎提出自己对数据方面的疑问,将在
“我可能干了个假的数据分析师!”经常有同学发出这种感慨,然后到处发《数据分析师是干什么的》《数据分析师、数据工程师、数据运营、数据挖掘工程师、商业数据分析师、我随便写个什么分析师之间到底有什么区别》一类的帖子。之所以会这样,是因为大家看的常常是理想状态下的数据分析岗位职责与内容。
领取专属 10元无门槛券
手把手带您无忧上云