MYSQL性能优化之分库分表与不停机修改mysql表结构,需要的朋友可以参考下 1、分库分表 很明显,一个主表(也就是很重要的表,例如用户表)无限制的增长势必严重影响性能,分 库与分表是一个很不错的解
这个问题是一个粉丝给我提的,我觉得挺有意(KENG)思(B)! 于是,今天我们就来谈一谈,这个自增主键用完了该怎么办!
在一些系统中有时某张表会出现百万或者千万的数据量,尽管其中使用了索引,查询速度也不一定会很快。这时候可能就需要通过分库,分表,分区来解决这些性能瓶颈。
TiDB 作为分库分表方案的一个 “终结者”,获得了许多用户的青睐。在切换到 TiDB 之后,用户告别了分库分表查询和运维带来的复杂度。但是在从分库分表方案切换到 TiDB 的过程中,这个复杂度转移到了数据迁移流程里。TiDB DM 工具为用户提供了分库分表合并迁移功能,在数据迁移的过程中,支持将分表 DML 事件合并迁移,并一定程度支持上游分表进行 DDL 变更。
单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。
这篇文章主要讲述了在单机数据库环境下如何进行优化,包括表结构优化、字符集选择、字段设计、索引创建等方面,同时指出了一些注意事项。
随着业务量的迅猛增长,数据库可能会面临性能瓶颈的挑战,尤其是在处理庞大的数据集,例如千万级别的数据量时,SQL查询的效率会明显降低。
所谓的“大表”指的是一张表中有大量的数据,而通常情况下数据量越多,那么也就意味着查询速度越慢。这是因为当数据量增多时,那么查询一个数据需要匹配和检索的内容也就越多,而检索的项目越多,那么查询速度也就越慢。
哈啰出行作为阿里系共享单车的头部企业,在江湖中的知名度还是有的,而今天我们就来看一道哈啰 Java 一面中的经典面试题:当数据表中数据量过大时,应该如何优化查询速度?
随着数据库数据量进一步增加,最大的表目前已经达到10亿+了,虽然已经进行的数据库的分库分表(采用阿里云的polardb),但是大表要改表结构的时候,还是会出现死锁的情况,系统会收到严重影响。
单库瓶颈:如果在项目中使用的都是单MySQL服务器,则会随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行存储,存在一下性能瓶颈:
在业务系统中,为了缓解磁盘IO及CPU的性能瓶颈,到底是垂直拆分,还是水平拆分;具体是分库,还是分表,都需要根据具体的业务需求具体分析。
本文中的问题精选自上期【你问我答】——数据库专题中读者的提问。【你问我答】是由美团点评技术团队推出的线上问答服务,你在工作学习中遇到的各种技术问题,都可以通过我们微信公众号发问,我们5000+工程师会义务为你解答,欢迎大家踊跃提问。高质量、定义清晰的问题会优先获得解答。 Q1:能不能推荐几本关于SQL的书籍。谢谢!谢谢! A:推荐图灵出的《SQL必知必会(第4版)》,这也是Amazon上最畅销的SQL图书的中文版,写得很明快,概念非常清楚。这本书用来学习关系型数据库也很不错,至少基本概念比大部头的教材说得
这是微服务还没兴起之前,很多项目的架构,随着业务的堆积,项目越来越庞大,数据量也越来越庞大,如果并发一旦上来,就很容易出现一些性能的问题。而且项目太庞大,维护起来也不容易。
一、问题的提出 互联网有很多“数据量较大,并发量较大,业务复杂度较高”的业务场景,其典型系统分层架构如下: (1)上游是业务层biz,实现个性化的业务逻辑 (2)中游是服务层service,封装数据访
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
TiDB 的一键水平伸缩特性,帮助用户告别了分库分表查询和运维带来的复杂度,但是在从分库分表方案切换到 TiDB 的过程中,这个复杂度转移到了数据迁移流程里。TiDB DM 工具为用户提供了分库分表合并迁移功能。
前篇: 《数据库中间件cobar调研笔记》 13年底负责数据库中间件设计时的调研笔记,拿出来和大家分享,轻拍。 一,TDDL是什么 TDDL是Taobao Distribute Data Layer的简称 淘宝一个基于客户端的数据库中间件产品 基于JDBC规范,没有server,以client-jar的形式存在 画外音:数据库中间件有基于服务端的,也有基于客户端的,TDDL属于后者;而cobar是一个中间层服务,使用mysql协议,属于前者。 二,TDDL不支持什么SQL 不支持各类join 不支持多表查询
随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行数据存储,存在以下性能瓶颈:
把存于一个库的数据分散到多个库中,把存于一个表的数据分散到多个表中。如果说读写分离是为了分散数据库读写操作压力,分库分表就是为了分散存储压力
有赞大数据技术应用的早期,我们使用 Sqoop 作为数据同步工具,满足了 MySQL 与 Hive 之间数据同步的日常开发需求。
首先回答一下为什么要分库分表,答案很简单:数据库出现性能瓶颈。用大白话来说就是数据库快扛不住了。
实体关系图,通过一张ER图,能够快速的了解数据库层面的表结构设计。目前做企业级应用系统,花费了大量的时间在数据库表结构的设计上,所以打算从源头梳理一下怎么样才能画好ER图,画好图是第一步,在这个过程中怎么样做好设计,然后来保证业务系统的功能实现以及扩展性的要求。
随着公司业务快速发展,数据量的猛增,数据库就会变成系统的瓶颈.随之而来的就会有运维成本高,数据热点等诸多问题.
分库分表的文章网上非常多,但是大多内容比较零散,以讲解知识点为主,没有完整地说明一个大表的切分、新架构设计、上线的完整过程。
1)用户需要查询所有订单,订单数据中肯定包含不同的user_ID、order_time。
项目前期基本都是单库单表,单库单表也是最常见的数据库设计,比如说:有一张用户表User,被放到数据库中,所有的用户的信息都被存储在该数据库的这张User表里。
NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netstandard,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode。
几年前我曾经服务过的一家电商公司,随着业务增长我们每天的订单量很快从30万单增长到了100万单,订单总量也突破了一亿。当时用的Mysql数据库。根据监控,我们的每秒最高订单量已经达到了2000笔(不包括秒杀,秒杀TPS已经上万了。秒杀我们有一套专门的解决方案,详见《秒杀系统设计~亿级用户》)。不过,直到此时,订单系统还是单库单表,幸好当时数据库服务器配置不错,我们的系统才能撑住这么大的压力。
将原本存储于单个数据库上的数据拆分到多个数据库,把原来存储在单张数据表的数据拆分到多张数据表中,实现数据切分,从而提升数据库操作性能。分库分表的实现可以分为两种方式:垂直切分和水平切分。
插入缓冲(insert buffer),二次写(double write),自适应哈希索引(ahi),预读(read ahead)
社会数字化、智能化的发展进程中,海量的数据带来巨大挑战,各行各业都在加速数字化转型,越来越多的企业意识到数据基础设施是成功的关键。然而,作为数据基础设施的核心,传统数据库例如 MySQL 面临性能和容量瓶颈,通过中间件实现的分库分表方案复杂度高,同时带来高昂的运维成本。
由于临时表只能被创建它的 session 访问,所以在这个 session 结束的时候,会自动删除临时表。也正是由于这个特性,临时表就特别适合我们文章开头的 join 优化这种场景,原因:
一般情况下我们创建的表对应一组存储文件,使用MyISAM存储引擎时是一个.MYI和.MYD文件,使用Innodb存储引擎时是一个.ibd和.frm(表结构)文件。
首先采用Mysql存储千亿级的数据,确实是一项非常大的挑战。Mysql单表确实可以存储10亿级的数据,只是这个时候性能非常差,项目中大量的实验证明,Mysql单表容量在500万左右,性能处于最佳状态。
今天推荐一个 MyBatis - Plus 官方发布的神器:mybatis-mate 。
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
DM 支持在线执行分库分表的 DDL 语句(通称 Sharding DDL),先前的文章中,我们介绍了悲观模式,即当上游一个分表执行某一 DDL 后,这个分表的迁移会暂停,等待其他所有分表都执行了同样的 DDL 才在下游执行该 DDL 并继续数据迁移。
分库分表就是我们把一个大表拆开分到不同的数据库实例上,比如将一个大表bt按照字段id(分区key)拆分成32个库中。分区key的选择尽量减少跨库和跨表查询。
传统的将数据集中存储至单一数据节点的解决方案,在容量、性能、可用性和运维成本这三方面难于满足海量数据场景。在单库单表数据量超过一定容量水位的情况下,索引树层级增加,磁盘 IO 也很可能出现压力,会导致很多问题。
不知道大家有没遇到过是用 MyCat 进行分库分表的数据库,对于这种的数据库,相信大家在是用 Navicat 进行连接时候,会发现,有时候明明自己的表是存在的,但是在使用 Navicat 的时候,左边是看不到这个表的,从而导致了,对添加字段,查看表结构不熟悉的同学来说,这简直是一种折磨,今天阿粉就把一些经典的 SQL 给大家整理出来,让大家以后在想看的时候,直接拉出来看。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本栏目Java开发岗高频面试题主要出自以下各技术栈:Java基础知识、集合容器、并发编程、JVM、Spring全家桶、MyBatis等ORMapping框架、MySQL数据库、Redis缓存、RabbitMQ消息队列、Linux操作技巧等。
在 MySQL 数据库中,支持上面四种隔离级别,默认的为 Repeatable read (可重复读);而在 Oracle 数据库中,只支持 Serializable (串行化)级别和 Read committed (读已提交)这两种级别,其中默认的为 Read committed 级别。
领取专属 10元无门槛券
手把手带您无忧上云