保障入湖数据的数据质量是一个重要的问题,尤其是在数据驱动的时代。为了确保数据的质量,可以采取以下措施:
推荐的腾讯云相关产品和产品介绍链接地址:
这些产品可以帮助企业保障数据的质量和一致性,并提供可靠的数据服务。
数字化转型是一个庞大的体系、漫长的过程,尤其是对于制造企业,所涉及的业务范围较广,在转型过程中,由于时间、资金、人力等资源的有限,许多制造企业采取了按业务或按部门分阶段执行,这种方式在一定程度上减轻了短期内转型的压力,对于部门来说提升了转型的效率。
说实在的,人工智能这个概念有些过于高大上,从大的方面包括深度学习、机器学习、强化学习等等,而深度学习又包括图像识别、语音识别、自然语言处理、预测分析;机器学习则包括监督学习、无监督学习、半监督学习,监督学习又细分为回归、分类、决策树等等。理论上人工智能什么都能做,什么都能迎合的上。
企业需要转变对数据资产价值的认知,在企业运营及管理中建立数据资产价值体系。在数字化业务领域中,需要考虑将数据权属定义至指定的部门及岗位,将数据资产的价值纳入到整体运营及考核中,真正做到将数字资产的价值嵌入到每一个数字化流程。
《华为数据之道》对企业管理和使用数据做了系统的总结,其中有不少的原理值得借鉴。在征得出版社许可后,摘录部分章节分享给大家,本文为摘录的第5篇,感兴趣的读者可以点击图片购买图书作参考。 业界都知道,华为是一家巨型的跨国企业,华为的数据底座是支撑华为业务运营的关键。因此,华为的数字化转型成为行业竞相研究的标杆。应行业的要求,华为对他们数字化转型和数据治理的经验进行了系统梳理,全部呈现在了《华为数据之道》一书中。我们来看看华为数字化转型的目标、蓝图和愿景究竟是什么。 传统企业通过制造先进的机器来提升生产效率,但
与传统的数据架构要求整合、面向主题、固定分层等特点不同,数据湖为企业全员独立参与数据运营和应用创新提供了极大的灵活性,并可优先确保数据的低时延、高质量和高可用,给运营商数据架构优化提供了很好的参考思路。
在数字化时代的浪潮中,数据成为了企业的新石油,它的价值无处不在。尤其是在数据资产入表的大环境下,数据的价值更加凸显。想象一下,如果我们能将来自四面八方的数据流汇聚成一条河,那么,这条数据之河将如何改变商业的未来?
通常是业务发展到一定规模后,业务分析师、CIO、决策者们,希望从大量的应用系统、业务数据中进行关联分析,最终得到“干货”出来。比如为啥利润会下滑?为啥库存周转变慢了?向数据要答案,生成报告、图表出来给决策层汇报,辅助经营决策。可是,数据库“脑容量不足”,擅长事务性工作,不擅长分析型的工作,于是就产生了数据仓库。数据仓库相当于一个集成化数据管理的平台,从多个数据源抽取有价值的数据,在仓库内转换和流动,并提供给BI等分析工具来输出干货。
近期,IDC发布了《数据要素全景研究,2024》报告,预测数据要素市场将在2024年迎来快速发展期。作为入选了该报告的代表企业之一,腾讯云一直致力于提供全面的数据要素解决方案。腾讯云大数据 TBDS+WeData 解决方案,能够为企业提供从数据采集、存储、治理、分析到应用的全链路数据要素服务,帮助企业高效挖掘数据价值,助力产业数字化升级。
点击标题下「大数据文摘」可快捷关注 有些人认为,“大数据”这一词汇不过是企业营销时的大肆炒作。但即使是那些接受大数据概念的人,也需要消除某些大数据误区。 全球领先的信息技术研究和咨询公司Gartner指出,大肆宣传大数据概念,使企业在选择适当的行动方案时,受到更多困扰,但对消除一些仍存在的误区却毫无帮助。 例如,80%的数据是非结构化的,这是错误的;又如高级分析功能只是更复杂形式的普通分析,分析公司Gartner指出,这也是不正确的。 Gartner公司在已发布的两篇报告《大数据对分析功能影响中的主要误区
数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理、实时分析、机器学习,以指导做出更好地决策。
首先,数据湖可存储海量、低加工的原始数据。在数据湖中开发成本较低,可以支持灵活的构建,构建出来的数据的复用性也比较强。
今天笔者将分享一位大神关于 Delta Lake 的演讲内容。这位是 Apache Spark 的 committer 和 PMC 成员,也是 Spark SQL 的最初创建者,目前领导 Databricks 团队,设计和构建 Structured Streaming 和 Databricks Delta,技术涉及分布式系统、大规模结构化存储和查询优化等方面。
随着企业数字化转型的深入,数据体量爆炸式增长,如何控制数据生产成本、发现有价值的数据,提高数据 ROI,成了企业数字化转型中后期的关键任务,这也是数据资产管理的终极目标。
随着企业数字化转型的深入,数据体量爆炸式增长,如何控制数据生产成本、发现有价值的数据,提高数据ROI,成了企业数字化转型中后期的关键任务,这也是数据资产管理的终极目标。
在当今数据驱动的商业环境中,数据不再仅仅是辅助决策的工具,而已成为企业最宝贵的资产之一。以一家零售企业为例,通过对顾客购买行为的数据分析,企业能够预测未来的市场趋势,优化库存管理,个性化顾客体验,从而在激烈的市场竞争中占据有利地位。
第一次接触数据湖的时候,我对这个概念也是一知半解,用一个比较形象的例子举例,湖里的水就是各种各样的数据,你舀了一瓶水上来但是不一定干净,有可能混杂着各种各样的杂质,成为能喝的水还要经过一层层过滤和净化。类比到数据湖也是如此,数据湖里有结构化和非结构化的数据,内部数据和外部数据,即原始数据的集合。在业务流程中是指根据业务规则直接产生的数据,数据湖保留了数据的原格式,原则上不对数据进行清洗、加工。
导读:2017 年华为提出了企业的新愿景:"把数字世界带入每个人、每个家庭、每个组织,构建万物互联的智能世界"。同时,华为公司董事、CIO陶景文提出了"实现全联接的智能华为,成为行业标杆"的数字化转型目标。
12月19日,9:00-12:40,由来自腾讯数据湖研发负责人邵赛赛老师出品的DataFunTalk年终大会——大数据架构论坛,将邀请来自腾讯、Tubi、车好多、T3出行、滴滴出行等公司的6位嘉宾,就大数据架构相关主题进行分享。本次会议全程直播,详细信息如下: 01 专题论坛及日程 论坛名称 大数据架构论坛论坛时间 12月19日,09:00-12:40论坛出品邵赛赛 腾讯 数据湖研发负责人分享时间 分享内容09:00-09:40如何让Ozone成为HDFS的下一代分布式存储系统 腾讯高级工程师 毛宝龙09
一、数字化转型面临的痛点问题 1.指标口径不统一 产品部门和财务部门一起开会给老板汇报,APP下单用户数产品1021W,财务1000W,产品说我的数据是数据团队出的,财务说我的也是,那数据为什么不
作者 | 罗燕珊 采访嘉宾|梅容, 明源云天际·PaaS 平台数据云事业部产品负责人 数据运行时如何保证快稳准?规范在前、开发在后、实时运维、有的治理。 “数据”是新的生产要素已成为共识,而要挖掘数据价值,就绕不过数据管理。在数据管理层面,近几年业界有一个相关概念受到广泛关注——DataOps。 DataOps 的概念自首次被提出至今已有 8 年,并在 2018 年被 Gartner 纳入数据管理技术成熟度曲线。从实施上看,当下 DataOps 仍处在发展初期,鲜少企业或团队能据此真正沉淀一套方法论或
随着信息时代的来临,数据已经成为现代社会的重要资产。无论是企业、科学研究还是政府机构,都在不断产生和积累大量数据。如何高效地存储、管理和分析这些数据,已经成为一个迫切需要解决的问题。本文将深入探讨大数据领域中两种关键的数据管理方法:数据湖(Data Lake)和数据仓库(Data Warehouse),并探讨它们如何融合以应对不断增长的数据挑战。
本文由三一集团CIO吕青海投递并参与由数据猿联合上海大数据联盟共同推出的《2024中国数智化转型升级优秀CIO》榜单/奖项评选。
数据管理是指组织对其整个数据生命周期进行的规划、执行和控制,以期最大化数据的价值。它涵盖了从数据采集、存储、处理到最终使用等全部过程。
随着大数据、人工智能、云计算、物联网等数字化技术的普及和广泛应用,传统的数据仓库模式,在快速发展的企业面前已然显的力不从心。数据湖,是可以容纳大量的原始数据的存储库和处理系统,已经成为企业应用大数据的重要工具。数据湖可以更好地支撑数据预测分析、跨领域分析、主动分析、实时分析以及多元化结构化数据分析,可以加速从数据到价值的过程,打造相应业务能力。而有效的数据治理才是数据资产形成的必要条件,同时数据治理是一个持续性过程,也是数据湖逐步实现数据价值的过程。未来在多方技术趋于融合,落地场景将不断创新,数据湖、数据治理或将成为新的技术热点。
2021年,我们看到围绕现代数据栈的兴起出现了相当大的加速效应。我们现在有一个海啸般的通讯、影响者、投资者、专门的网站、会议和活动来宣扬它。围绕现代数据栈的概念(尽管仍处于早期阶段)与云中数据工具的爆炸性增长紧密相连。云计算带来了一种新的基础设施模式,它将帮助我们快速地、程序化地、按需地建立这些数据栈,使用像Kubernetes这样的云原生技术、像Terraform这样的基础设施即代码以及DevOps的云计算最佳实践。因此,基础设施成为构建和实施现代数据栈的一个关键因素。
2021年,我们看到围绕现代数据栈的兴起出现了相当大的加速效应。我们现在有一个海啸般的通讯、影响者、投资者、专门的网站、会议和活动来宣扬它。围绕现代数据栈的概念(尽管仍处于早期阶段)与云中数据工具的爆炸性增长紧密相连。云计算带来了一种新的基础设施模式,它将帮助我们快速地、程序化地、按需地建立这些数据栈,使用像Kubernetes这样的云原生技术、像Terraform这样的基础设施即代码以及DevOps的云计算最佳实践。因此,基础设施成为构建和实施现代数据栈的一个关键因素。 当我们已经进入2022年,我们可以
我们云原生实验室在这段时间一直从事联邦学习的项目研发,联邦学习解决的是机器学习中企业数据联合使用的问题,因此我们也很关注各类数据管理框架和技术。近期读了一本关于数据管理的书:《华为数据之道》,对企业管理和使用数据做了系统的总结,其中有不少的原理值得借鉴。在征得出版社许可后,摘录部分章节分享给大家,感兴趣的读者可以点击图片购买图书作参考。 最近的畅销书《华为数据之道》对华为的数字化转型方法和经验进行了系统性地披露。企业的数字化转型,数据治理是关键,数据的分类管理又是数据治理的核心,本文将通过《华为数据之道》
近年来,随着IOT、5G等技术的普及与发展,以及数智化进程的推进,企业获取的数据量正以指数级增长。为解决海量数据的采集、加工、分析,以沉淀数据资产来更好的面对营销、运营等业务难题与挑战,数据中台的概念应运而生。这个由阿里巴巴在2015年根据自身业务需要提出的概念,后随着各大互联网公司纷纷提出中台战略以及组织架构的调整,技术中台、组织中台、数据中台等各种中台的概念喷涌而出。本文主要围绕数据中台展开。
数据治理中心DataArts Studio是为了应对上述挑战,针对企业数字化运营诉求提供的具有数据全生命周期管理和智能数据管理能力的一站式治理运营平台,包含数据集成、数据开发、数据架构、数据质量监控、数据资产管理、数据服务、数据安全等功能,支持行业知识库智能化建设,支持大数据存储、大数据计算分析引擎等数据底座,帮助企业快速构建从数据接入到数据分析的端到端智能数据系统,消除数据孤岛,统一数据标准,加快数据变现,实现数字化转型。
互联网技术发展的当下,数据是各大公司最宝贵的资源之一已经是不争的事实。收据的收集、存储和分析已经成为科技公司最重要的技术组成部分。大数据领域经过近十年的高速发展,无论是实时计算还是离线计算、无论是数据仓库还是数据中台,都已经深入各大公司的各个业务。
后来,为了更有效率的记事和工作,数据库出现了。数据库核心是满足快速的增删改查,应对联机事务。
《关于数据治理的读书笔记 - 数据治理、数据管理和数据管控的理解》我们了解了有关数据治理、数据管理和数据管控,这几个名词之间的区别和联系,回到数据治理的话题上,数据治理究竟是什么?
传统数仓定制化报表,排期周期长,响应需求慢,重复开发工作比较多。T+1的数据失效也满足不了现在互联网业务场景下对数据实时处理能力的需求。对中台平台自主化开发,可以提升数据加工能力沉淀,以及实时数据处理能力。
2019年3月18日“数据中台已成下一风口,它会颠覆数据工程师的工作吗?”一文火爆数据人的朋友圈,虽然此后关于数据中台有各种正、负向的文章,并没影响各家公进行中台实践的进程,有的专门把大数据平台部改名数据中台部。近期看到数据产品群里有人说“现在很多人很反感数据中台”,作为数据中台产品经理不禁虎躯一震。数据中台从众人追捧到“阿里彻底拆中台了”的唱衰反感,历时不到2年,难道数据中台真的凉凉了吗?
大数据已深入到企业经营的方方面面,数字化管理已不仅仅是传统的报表,更深入到具体的业务核心流程中,数据平台的稳定性、数据质量问题将直接影响到企业的正常经营,业务对数据的依赖也越来越高,更低的使用成本、更高的计算性能、更快的数据时效等一直都是大数据平台技术架构升级与优化的目标。 近年来,云原生、资源弹性伸缩、数据实时化、湖仓一体、流批一体等新兴技术术语时常出现,但这些技术如何落地、后续演进方向如何、给业务带来的价值几何等很多人都不清楚。 在 4 月 21-22 日上海举办的 ArchSummit 架构师峰会上,
2019年4月24日在美国旧金山召开的 Spark+AI Summit 2019 会上,Databricks 的联合创始人及 CEO Ali Ghodsi 宣布将 Databricks Runtime 里面的 Delta Lake 基于 Apache License 2.0 协议开源。Delta Lake 是一个存储层,为 Apache Spark 和大数据 workloads 提供 ACID 事务能力,其通过写和快照隔离之间的乐观并发控制(optimistic concurrency control),在写入数据期间提供一致性的读取,从而为构建在 HDFS 和云存储上的数据湖(data lakes)带来可靠性。Delta Lake 还提供内置数据版本控制,以便轻松回滚。目前 Delta Lake 项目地址为 https://delta.io/,代码维护地址 https://github.com/delta-io/delta。
数字化转型浪潮卷起各种新老概念满天飞,数据湖、数据仓库、数据中台轮番在朋友圈刷屏,有人说“数据中台算个啥,数据湖才是趋势”,有人说“再见了数据湖、数据仓库,数据中台已成气候”……
随着数字化转型,企业越来越重视数据的价值和利用。商业智能(Business Intelligence,BI)作为一种数据分析和决策支持的重要工具,被广泛应用于各行各业。然而,对于BI项目的成功实施,ETL(Extract, Transform, Load)过程的重要性不容忽视。ETL作为BI项目的基础,如果缺乏或不完善,往往会导致BI项目失败的风险增加。在实际项目接触中我们发现很多企业是先购买了BI工具而往往没有购买ETL工具,企业往往希望通过BI中自带的ETL功能来解决数据采集和清洗的问题,在运行一段时间后企业往往就会发现这种模式是不可行的,接下来我们将分析以下为什么这种模式是不可行的,为什么企业需要购买专的ETL工具。
大数据文摘作品 近日,火山引擎数智平台(VeDI)正式发布《数据智能知识图谱》(以下简称「图谱」),内容覆盖了包括数据存储计算、数据分析加速、数据研发治理、数据洞察分析,数据辅助决策、数据赋能营销等企业数据全生命周期的管理与应用。 点击文末「阅读原文」,下载高清图谱。 更强劲的数据基座能力 随着企业数字化转型的需求愈加强烈,数据存储计算作为转型最底层的基座也更加受到关注。过去,传统湖仓一体时常发生数据源数据入湖时效性差、多源数据管理难等问题;而在批流一体方面,由于批流存储引擎不统一导致批流任务分开处理
写在前面
这篇博文中提出的建议并不新鲜。事实上许多组织已经投入了数年时间和昂贵的数据工程团队的工作,以慢慢构建这种架构的某个版本。我知道这一点,因为我以前在Uber和LinkedIn做过这样的工程师。我还与数百个组织合作,在开源社区中构建它并朝着类似的目标迈进。
光阴似箭,岁月如刀。小编已经从刚毕业时堤上看风的白衣少年,变成了一个有五年开发经验的半老程序员。五年——是一个非常重要的时间节点,意味你见过很多套技术构架,学过很多技术组件,写过很多行代码,有了自己的技术理解、知识体系和编码风格。这个时候我们对待技术的态度已经从扩宽广度,慢慢转变成沉淀深度为主了。
著有:《图解 Spark 大数据快速分析实战》;《offer 来了:Java 面试核心知识点精讲(原理篇)》;《offer 来了:Java 面试核心知识点精讲(架构篇)》。
嘉宾| 林国强 霍太稳 编辑| 高玉娴 在物流行业,顺丰几乎是时效的代名词。如果手上有一个急件,希望以最快的速度送达目的地,想必多数人都会优先选择顺丰。 那么,顺丰是如何做到的?据了解,一个货品从发件人处送到收件人手中,每个环节的数据信息都会被精准记录,通过件量预测、分仓管理、路线规划和分析,可以针对网点选址、快递员的排班、车辆的分配调度、货运飞机航线规划等等,给出“最优解”。 但值得注意的是,这个“最优解”是处于不断变化中的。尤其是在受到不确定因素不断干扰的市场环境下,更多突发的状况需要被纳入其中
在前面两篇文章(《数据智能时代来临:本质及技术体系要求》和《多维度分析系统的选型方法》)之中,我们概括性地阐述了对于数据智能的理解,并根据工作中团队涉及到的多维度分析系统的选型方法进行了穿插介绍。按照原先的规划,我们接下去的内容会涉及数据智能平台中的治理、安全计算以及质量保证方面。
领取专属 10元无门槛券
手把手带您无忧上云