该文介绍了在Ubuntu 16.04环境下安装NVIDIA GPU显卡驱动、CUDA 8.0以及PyTorch的方法。首先,需要更新系统并安装NVIDIA驱动,然后下载CUDA 8.0,接着安装PyTorch。安装完成后,可以通过在终端中输入 'import torch' 来验证安装是否成功。最后,更新numpy并验证GPU是否可用。
本篇文章是基于安装CUDA 9.0的经验写,CUDA9.0目前支持Ubuntu16.04和Ubuntu17.04两个版本,如下图所示(最下面的安装方式我们选择第一个,即runfile方式):
本文主要针对Ubuntu 17.04版本下,opencv进行源码编译安装。开发环境主要针对python 对 openCV库的调用。下面话不多说了,来一起看看详细的介绍:
目前,大多情况下,能搜到的基本上都ubuntu 14.04.或者是ubuntu 16.04的操作系统安装以及GPU 环境搭建过程,博主就目前自身实验室环境进行分析,总结一下安装过程。
作者:Slav Ivanov@blog.slavv.com 问耕 编译整理 量子位 出品 | 公众号 QbitAI Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长…… 没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。 硬件清单 之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算,我给这套系统的总预算是1700美元(约1165
Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长…… 没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自
深度学习开源框架众多,基于C++的训练框架唯有Caffe一个,尽管Caffe在做一些比较新的任务时成本极高,但它依旧有它存在的价值,今天在这里给出几个推荐理由。
我知道,基于GPU的高端的深度学习系统构建起来非常昂贵,并且不容易获得,除非你……
来源:量子位 作者:Slav Ivanov@blog.slavv.com 编译:问耕 本文长度为4600字,建议阅读6分钟 本文教你万元打造一个深度学习系统。 Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长…… 没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。 硬件清单 之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算
本文介绍了在Ubuntu 17.04系统上安装TensorFlow 1.2的GPU版本的过程,包括安装NVIDIA的GPU-CUDA, cuDNN, libcupti-dev, 以及通过pip或spip安装TensorFlow-GPU版本。
今天,2017 年 4 月 13 日,Canonical 官方发布了 Ubuntu 17.04(Zesty Zapus)的最终版。自从去年十月发布 Ubuntu 16.10(Yakkety Yak)起,它已经开发了将近 6 个月。
Ubuntu 17.04的正式发布是Linux桌面爱好者的好消息。 Ubuntu 17.04的代号是Zesty Zapus,因为它不是LTS版本,所以它的支持仅在未来9个月可用(2018年1月)。 Ubuntu 17.04中发现的一些变化如下所示:
深度学习大火,为了赶上AI的班车,许多研究生本科生们都在搞深度学习。然而深度学习环境搭建必不可少,这篇文章是我多次为实验室搭建环境所积累起来的经验总结,希望所有看到这篇文章的同志们,可以顺利解决环境搭建的问题。
作者:刘才权 编辑:田 旭 安装平台 1 平台 目前TensorFlow已支持Mac、Ubuntu和Windows三个主流平台(64位平台), 2 GPU vs CPU 在安装时可以选择安装版本是否
之后,按照提示安装,成功后重启即可。 如果提示安装失败,不要着急重启;可重复上述步骤,多试几次。
在安装使用 detectron2 的时候碰到**Kernel not compiled with GPU support **问题,前后拖了好久都没解决,现总结一下以备以后查阅。
聊聊为什么使用Pytorch,个人觉得Pytorch比Tensorflow对新手更为友善,而且现在Pytorch在学术界使用的得更多,大有逆袭Tensorflow之势。最近两年的顶会文章中,代码用Pytorch的比Tensorflow多。大家如果对Tensorflow也感兴趣,完全可以学习了Pytorch之后继续学习Tensorflow,基本原理都是相通的。让我们开始开启愉快的Pytorch学习之旅吧!
Cmake是跨平台构编译大型项目的工具,配合make工具和编译器我们理论上我们可以编译任何工程。具体的介绍就不多说了,不论是OpenCV还是Pytorch都是用cmake作为构建工具,当然还有很多很多工程项目使用它,这里不进行详细的介绍。
最近有个科研课题需要在树莓派上做一系列验证,但是实验的程序是依赖OpenCV库的(最重要我们修改了库源码),而在树莓派上编译OpenCV源码很费时间,因此我只好使用交叉编译的方法来编译源程序。刚开始我们觉着网上材料大片,这部分的问题应该不大。可到操刀干活的时候,我才发现网上很多方法不仅繁琐,而且有的甚至还不是那么一回事,没看到一篇完全适合我的情况的。于是,我花了一天半左右的时间,整理这些材料并结合一点TRIZ原理,完成了这项任务。现在分享一下我的方案总结,不过我的方案不尽完善,欢迎大家指点修正,帮助后人节省时间。
我们来说说第二类,需要做的事情是先编译opencv的源码、再编译matlab可用的mex文件夹,这两步的编译器必须是同一个,而最近几年的新版本matlab都推荐使用MinGW-w64编译器来使用mex、可是mexopencv提供的编译辅助函数在Windows系统上默认使用Visual Studio或者Windows SDK来编译,如果觉得自己需要Visual Studio的其他功能,安装一下也是挺好的
先更新一下下载源。用17.04 的源可以解决在18.04中找不到libjasper.dev的问题。
Persist in sharing and promote mutual progress
长期以来,我一直是在 Ubuntu 系统上做开发。近一年来,由于为信创系统(统信 UOS、银河麒麟等)开发应用软件,免不了使用国产操作系统。使用下来,发现国产系统在易用性、稳定性方面已经相当不错,而且用户界面比起 Ubuntu 还美观很多。系统集成的应用商店,里面的应用非常全面,基本上满足了作为系统开发的需求。
有很多工具能够帮助开发者在 Linux 和 Mac 上构建深度学习环境(比如 Tensorflow,不幸的是,TensorFlow 无法在 Windows 上轻松安装),但是很少人关注如何在 Win10 设备上有效构建深度学习环境。大多数人关注的是如何让深度学习框架运行在 Win10 设备的 Ubuntu VM 上,这不是最优的解决方案。
在GPU上开发大规模并行应用程序时,需要一个调试器,GDB调试器能够处理系统中每个GPU上同时运行的数千个线程。CUDA-GDB提供了无缝的调试体验,可以同时调试应用程序的CPU和GPU部分。
HHVM 3.24 终于发布了,此版本包含新功能、错误修复、性能改进和对未来改进的支持工作。值得注意的是,HHVM 3.24 是支持 PHP 5 的最后一个版本,这包括对 PHP 5 扩展 (ext_zend_compat) 的源码级别兼容性。官方建议迁移到 Hack 或 PHP 7。
Caffe的创造者 Yangqing Jia,最近花了些时间在NVIDIA Jetson 开发板上运行caffe框架。Jetson TK1 有192个CUDA核,是非常适用于深度学习这种计算任务的。未来,如果我们想在移动设备上做一些事情的话,Jetson是一个不错的选择,而且它预装Ubuntu操作系统,因此也是非常易于开发的。 Caffe内置了Alexnet模式,这是Imagenet-winning 架构的一个版本,可以识别1000个不同种类的物体。用这个作为一种benchm
本文讲述了使用NVIDIA官方工具搭建基于GPU的TensorFlow平台的教程。
Ubuntu 16.04 + cuda9.0 + cudnn7.0 或 Ubuntu 16.04 + cuda8.0 + cudnn5.1
作为一个毕业一年多的辣鸡CTF选手,一直苦于pwn题目的入门难,入了门更难的问题。本来网上关于pwn的资料就比较零散,而且经常会碰到师傅们堪比解题过程略的writeup和没有注释,存在大量硬编码偏移的脚本,还有练习题目难找,调试环境难搭建,GDB没有IDA好操作等等问题。作为一个老萌新(雾),决定依据Atum师傅在i春秋上的pwn入门课程中的技术分类,结合近几年赛事中出现的一些题目和文章整理出一份自己心目中相对完整的Linux pwn教程。
【GiantPandaCV导语】这篇文章主要是讲解了如何给Jetson Nano装机,以及在Jetson Nano上如何配置TVM并将MxNet的ResNet18跑起来获取分类结果,最后我们还体验了一下使用AutoTVM来提升ResNet50在Jetson Nano上的推理效率,AutoTune了一个Task(一共需要AutoTune 20个Task)之后可以将ResNet50的推理速度做到150ms跑完一张图片(224x224x3),从上面的BenchMark可以看到TensorRT在FP32的时候大概能做到50-60ms推理一张图片(224x224x3)。本文所有实验代码均可以在这里找到:https://github.com/BBuf/tvm_learn/blob/main/relay ,如果你对学习TVM感兴趣可以考虑点个star。
安装Ubuntu 20.04 安装NVIDIA 驱动 配置Pytouch 和tensorflow环境
Ubuntu安装Caffe出现无法登陆图形界面或者循环登陆(Loop Login)问题,一般都是由于显卡驱动或者Cuda低版本的一些不兼容问题。
由于课题的原因,笔者主要通过 Pytorch 框架进行深度学习相关的学习和实验。在运行和学习网络上的 Pytorch 应用代码的过程中,不少项目会标注作者在运行和实验时所使用的 Pytorch 和 cuda 版本信息。由于 Pytorch 和 cuda 版本的更新较快,可能出现程序的编译和运行需要之前版本的 Pytorch 和 cuda 进行运行环境支持的情况。比如笔者遇到的某个项目中编写了 CUDAExtension 拓展,而其中使用的 cuda 接口函数在新版本的 cuda 中做了修改,使得直接使用系统上已有的新版本 cuda 时会无法编译使用。
1).run形式安装cuda。清理原有显卡驱动后,先安装自己显卡对应的驱动,在步骤中出现”Would you like to run the nvidia-xconfig utility to automatically update your X configuration file…”时,选择 No。(这里是cuda自带的旧版本的驱动)。
不同ubuntu版本的ISO File: https://cn.ubuntu.com/download 注意: windows虚拟机中的显卡是物理CPU模拟出来的,没有调用物理GPU,所以虚拟机装ubuntu是无法进行深度学习训练。
选自Medium 作者:Slav 机器之心编译 参与:Quantum Cheese、Lj Linjing、蒋思源 在用了十年的 MacBook Airs 和云服务以后,我现在要搭建一个(笔记本)桌面了 几年时间里我都在用越来越薄的 MacBooks 来搭载一个瘦客户端(thin client),并已经觉得习以为常了。所以当我涉入深度学习(DL)领域后,我毫不犹豫的选择了当时最新的 Amazon P2 云服务。该云服务不需要预付成本,能同时训练很多个模型,并且还能让一个机器学习模型慢慢地训练自己。 但随着时
Apache TVM is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.
CUDA / Compute Unified Device Architecture / CUDA Toolkit / 工具包
1,Nvidia官方文档:https://docs.nvidia.com/cuda/wsl-user-guide/index.html
内容一览:TVM 共有三种安装方法:从源码安装、使用 Docker 镜像安装和 NNPACK Contrib 安装。本文重点介绍如何通过源码安装 TVM。
参考很多文章,以这篇为主:http://www.linuxidc.com/Linux/2016-11/136768.htm
OpenCV是一个跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。
前方图片已沦陷,建议后台回复 环境 获取word版,下载到电脑上方便查看。 主要包括以下内容: 1. 安装Ubuntu 16.04 系统 2.安装Ubuntu系统必要软件 3. 安装cuda和cudnn 4. 安装TensorFlow,Keras 然后后面会用到很多命令,但是别问为什么要这样做哈!安装软件呢,是一件特别无聊的事情,但是当你全部都安装完成之后,一种成就感油然而生啊,有木有!加油!!! 1. 下载Ubuntu 一般来说国内的下载地址有两个,一个是阿里云镜像,一个是网易源镜像。这里给一个网易源的地
JetPack(Jetson SDK)是一个按需的一体化软件包,捆绑了NVIDIA®Jetson嵌入式平台的开发人员软件。JetPack 3.0包括对Jetson TX2 , Jetson TX1和Jetson TK1开发套件的最新L4T BSP软件包的支持。 使用最新的BSP( 用于Jetson TX1的L4T 27.1,用于Jetson TX1的 L4T 24.2.1和用于Jetson TK1的L4T 21.5 )自动刷新您的Jetson开发套件,并安装构建和配置Jetson嵌入式平台应用所需的最新软件
推荐时间1min30s,网上已有多关于cuda安装教程,但往往不是这有问题,就是那有问题。这里写一个简单易懂可行的cuda 安装教程。
作者Lukas Biewald,是CrowdFlower创始人。 量子位编译整理。 问:搭建一个深度学习系统拢共要花多少钱? 答:在树莓派上运行TensorFlow成本是39美元;在GPU驱动的亚马逊EC2节点上运行TensorFlow的成本是1美元,每小时。这些都是可行的方案。 当然要想玩得过瘾,可以自己搭建一个快速的深度学习系统,成本不到1000美元。 这也不是小数目,但这么做的好处是,一旦你有了自己的机器设备,可以运行数百个深度学习应用程序,比方增强的机器人大脑,或者搞点艺术创作。这套系统至少比M
如果你想从GitHub安装Theano的前沿或开发版本,请确保你正在阅读此页面的最新版本。
领取专属 10元无门槛券
手把手带您无忧上云