将AlexNet权重加载到Keras模型中,使用Theano后端,需要确保权重格式与Keras模型结构相匹配。以下是详细步骤和示例代码:
以下是将AlexNet权重加载到Keras模型中的示例代码:
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from keras.optimizers import SGD
# 定义AlexNet模型结构
def build_alexnet(input_shape):
model = Sequential()
model.add(Conv2D(96, (11, 11), strides=4, activation='relu', input_shape=input_shape))
model.add(MaxPooling2D((3, 3), strides=2))
model.add(Conv2D(256, (5, 5), padding='same', activation='relu'))
model.add(MaxPooling2D((3, 3), strides=2))
model.add(Conv2D(384, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(384, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D((3, 3), strides=2))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))
return model
# 加载AlexNet权重
def load_alexnet_weights(model, weights_path):
weights_dict = np.load(weights_path, encoding='latin1').item()
for layer in model.layers:
if layer.name in weights_dict:
layer.set_weights(weights_dict[layer.name])
# 构建模型
input_shape = (227, 227, 3)
model = build_alexnet(input_shape)
# 加载权重
weights_path = 'path_to_alexnet_weights.npy'
load_alexnet_weights(model, weights_path)
# 编译模型
model.compile(optimizer=SGD(lr=0.01), loss='categorical_crossentropy', metrics=['accuracy'])
# 查看模型结构
model.summary()
通过以上步骤和代码示例,可以成功将AlexNet权重加载到Keras模型中,并使用Theano作为后端进行训练和推理。
领取专属 10元无门槛券
手把手带您无忧上云