今天我们继续推出一篇数据处理常用的操作技能汇总:灵活使用pandas.groupby()函数,实现数据的高效率处理,主要内容如下: pandas.groupby()三大主要操作介绍 pandas.groupby...pandas.groupby()实例演示 首先,我们自己创建用于演示的数据,代码如下: import pandas as pd import numpy as np # 生成测试数据 test_data...同时计算多个结果 可能还有小伙伴问“能不能将聚合计算之后的新的结果列进行重命名呢?”,该操作在实际工作中经常应用的到,如:根据某列进行统计,并将结果重新命名。...在pandas以前的版本中需要自定义聚合操作,如下: # 定义aggregation汇总计算 aggregations = { #在values01列上的操作 'values01': {...这里举一个例子大家就能明白了,即我们以Team列进行分组,并且希望我们的分组结果中每一组的个数都大于3,我们该如何分组呢?练习数据如下: ?
我们希望比较不同营销渠道,广告系列,品牌和时间段之间的转化率,以识别指标的差异。 Pandas是非常流行的python数据分析库,它有一个GroupBy函数,提供了一种高效的方法来执行此类数据分析。...df.groupby(['job']).mean() ? 如果我们想要更具体一些,我们可以取dataframe的一个子集,只计算特定列的统计信息。...data[['job', 'credit_amount']].groupby(['job']).agg([min, max]) ? 也可以对不同的列使用不同的聚合。...可视化绘图 我们可以将pandas 内置的绘图功能添加到GroupBy,以更好地可视化趋势和模式。...我扩展了我在上一节中创建的代码,以创建堆叠的条形图,以更好地可视化每种工作类型的好坏贷款的分布。
inplace参数设置为True以保存更改。我们删除了4列,因此列数从14减少到10。 2.读取时选择特定的列 我们只打算读取csv文件中的某些列。读取时,列列表将传递给usecols参数。...我们可以使用特定值,聚合函数(例如均值)或上一个或下一个值。 对于Geography列,我将使用最常见的值。 ?...12.groupby函数 Pandas Groupby函数是一种通用且易于使用的函数,有助于获得数据概览。它使探索数据集和揭示变量之间的潜在关系变得更加容易。 我们将为groupby函数写几个例子。...但新列将添加在末尾。如果要将新列放在特定位置,则可以使用插入函数。 df_new.insert(0, 'Group', group) df_new ?...25.绘制直方图 Pandas不是数据可视化库,但用它创建一些基本图形还是非常简单的。 我发现使用Pandas创建基本图比使用其他数据可视化库更容易。 让我们创建Balance列的直方图。
首先,可以通过isnull 和 notnull 方法查看有哪些NaN值,这两个方法返回的布尔值,指示该值是否是NaN值,结合sum 方法可以获取每列空值的数目以及总数。...# axis 按行操作,how 原理同上 # 同时可以添加条件删除 print(df.dropna(axis = 1, thresh = 2)) # axis=1按列操作,thresh 指示这一列或行中有两个或以上的非...复杂的 使用向前 或 向后 填充数据,依旧使用fillna 方法,所谓向前 是指 取出现NaN值的前一列或前一行的数据来填充NaN值,向后同理 # 在df 的e 这一列上操作,默认下按行操作,向前填充数据...结果一样,但每列数据的排列会有区别,因为结果表会先显示左表的结果 print choose.merge(course, how = "right") pandas 数据分组 1. groupby 方法...pandas 最基本的时间序列类型就是以时间戳(TimeStamp)为 index 元素的 Series 类型。Python和Pandas里提供大量的内建工具、模块可以用来创建时间序列类型的数据。
对象有一些缺点: 无法同时使用多个函数 无法对特定的列使用特定的聚合函数 无法使用自定义的聚合函数 无法直接对结果的列名在聚合前进行自定义命名 可以通过agg函数解决这些问题: 当使用多个聚合函数时,需要用列表的形式把内置聚合函数对应的字符串传入...gb.agg(['sum', 'idxmax', 'skew']) # 对height和weight分别用三种方法聚合,所以共返回六列数据 对特定的列使用特定的聚合函数 可以通过构造字典传入agg中实现...'new_column',其值为'column1'中每个元素的两倍,当原来的元素大于10的时候,将新列里面的值赋0 import pandas as pd data = {'column1':[1...题目:请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中 import pandas as pd data =...当apply()函数与groupby()结合使用时,传入apply()的是每个分组的DataFrame。这个DataFrame包含了被分组列的所有值以及该分组在其他列上的所有值。
每次爬虫获取的数据都是需要处理下的。 所以这一次简单讲一下Pandas的用法,以便以后能更好的使用。 数据整合是对数据进行行列选择、创建、删除等操作。...可以直接用列名选择,也可以通过ix、iloc、loc方法进行选择行、列。 ix方法可以使用数值或者字符作为索引来选择行、列。 iloc则只能使用数值作为索引来选择行、列。...创建列。可以直接通过赋值完成,也可通过数据框的assign来完成赋值,不过后一种方法需要赋值给新表才能生效。...删除列。使用数据框的方法drop。...('user_id')) 输出结果如下,分别对应查看,删除,特定列删除。
在这里,我们以正确的顺序成功地将该列转换为标签编码的列。 用于独热编码的get_dummies() 获取虚拟变量是pandas中的一项功能,可帮助将分类变量转换为独热变量。...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...为了达到我们的目的,我们将使用具有转换功能的groupby来创建新的聚合功能。...这就是我们如何创建多个列的方式。在执行这种类型的特征工程时要小心,因为在使用目标变量创建新特征时,模型可能会出现偏差。...仅通过单个日期时间变量,我们就可以创建六个新变量,这些变量在模型构建时肯定会非常有用,这并不奇怪。 注意:我们可以使用pandas dt函数创建新功能的方式有50多种。
""" 以上代码来自pandas的doc文档 在上面的代码块中,当使用每月“M”频率的Grouper方法时,请注意结果dataframe是如何为给定的数据范围生成每月行的。...在使用px之前,我们将px对象分配给了fig(如上所示),然后使用fig.show()显示了fig。现在,我们不想创建一个包含一系列数据的图形,而是要创建一个空白画布,以后再添加到其中。...例如,使用groupby方法时,我们丢失了类别(a、b)的type列,仅凭三个数据点很难判断是否存在任何类型的趋势。...这一次,请注意我们如何在groupby方法中包含types列,然后将types指定为要计数的列。 在一个列中,用分类聚合计数将dataframe分组。...有人想要在条形图中添加趋势线,当我们使用Plotly Express来生成趋势线时,它也会创建数据点——这些数据点可以作为普通的x、y数据访问,就像dataframe中的计数一样。
注意,在read_cvs行中,包含了一个parse_dates参数,以指示“Transaction Date”列是日期时间类型的数据,这将使以后的处理更容易。...datetime_is_numeric参数还可以帮助pandas理解我们使用的是datetime类型的数据。 图2 添加更多信息到我们的数据中 继续为我们的交易增加两列:天数和月份。...使用groupby汇总数据 无组织的交易数据不会提供太多价值,但当我们以有意义的方式组织和汇总它们时,可以对我们的消费习惯有更多的了解。看看下面的例子。...现在,你已经基本了解了如何使用pandas groupby函数汇总数据。下面讨论当使用该函数时,后台是怎么运作的。...例如,属性groups为我们提供了一个字典,其中包含属于给定组的行的组名(字典键)和索引位置。 图12 要获得特定的组,简单地使用get_group()。
我会从不同的角度来处理这些数据,试图了解人们是如何投票的。 我将使用pandas库进行数据分析和可视化,因此这也是使用pandas的函数和方法的良好实践。...在分析中有一些多余的列。例如state_fips、state_cen和state_ic代表什么可能不是很确定,但它们可以作为一个指示器或状态的唯一值。 我们可以通过检查和比较这些列中的值来确认。...office列仅表示这是总统选举,因此它包含一个惟一的值(US President)。version和notes列也没有任何用处。 我们可以使用Pandas的drop函数来删除这些列。...“totalvotes”列显示特定状态下的投票总数。因此,下面的代码将创建一个dataframe,其中包含每个州对于每次选举的总票数。...每行包含获胜者的票数和特定选举在特定州的总票数。一个简单的groupby函数将为我们提供各个国家的值。
前言 在使用 Pandas 进行数据分析时,我们需要经常进行查询和统计分析。...: # 删除所有含有缺失值的行 df.dropna() # 删除所有含有缺失值的列 df.dropna(axis=1) 用指定值填充缺失值: # 将缺失值使用 0 填充 df.fillna(0) 数据去重...', 'age']) 对 Series 去重: # 对 'name' 列进行去重 df['name'].drop_duplicates() 数据合并 横向(按列)合并 DataFrame: # 创建一个新的...pd.concat([df, other_df], axis=1) 纵向(按行)合并 DataFrame: # 创建一个新的 DataFrame other_data = {'name': ['Kate...: # 统计不同性别和年龄的人数,以 'gender' 为行、'age' 为列,'name' 计数 pd.pivot_table(df, values='name', index='gender', columns
添加或插入行 要向DataFrame追加或添加一行,我们将新行创建为Series并使用append()方法。...我们也可以添加新的列 # Adding a new column to existing DataFrame in Pandas sex = ['Male','Female','Male','Female...NaN(非数字的首字母缩写)是一个特殊的浮点值,所有使用标准IEEE浮点表示的系统都可以识别它 pandas将NaN看作是可互换的,用于指示缺失值或空值。...sort_values ()可以以特定的方式对pandas数据进行排序。...groupby 是一个非常简单的概念。我们可以创建一组类别,并对类别应用一个函数。这是一个简单的概念,但却是我们经常使用的极有价值的技术。
使用谓词对行切片 为了分割出 2016 年的行,我们将首先创建一个序列,其中每个想要保留的行为True,每个想要删除的行为False。...这很简单,因为序列上的数学和布尔运算符,应用于序列中的每个元素。...分组 为了在pandas中进行分组。 我们使用.groupby()方法。...,则通常可以使用数据透视表,以更方便的格式显示数据。...总结 我们现在有了数据集中每个性别和年份的最受欢迎的婴儿名称,并学会了在pandas中表达以下操作: 操作 pandas 分组 df.groupby(label) 多列分组 df.groupby([label1
但是,像往常一样,每当一个数据帧从另一个数据帧或序列添加一个新列时,索引都将在创建新列之前首先对齐。 准备 此秘籍使用employee数据集添加一个新列,其中包含该员工部门的最高薪水。...准备 在本秘籍中,我们使用groupby方法执行聚合,以创建具有行和列多重索引的数据帧,然后对其进行处理,以使索引为单个级别,并且列名具有描述性。...Pandas 允许您以任何希望的方式来分组。 将cuts序列传递到groupby方法,然后在AIRLINE列上调用value_counts方法以查找每个距离组的分布。...我们选择使用assign方法动态创建新列,以允许连续的方法链。 更多 如果您精通 SQL,则可以将 SQL 查询作为字符串编写,并将其传递给read_sql_query函数。...Pandas 绘图的基础知识 可视化航班数据集 堆叠面积图以发现新兴趋势 了解 Pandas 与 Pandas 的区别 使用 Seaborn 网格进行多元分析 在 Seaborn 钻石数据集中发现辛普森悖论
如果将两个object列合并在一起的,没什么意思,因为大家都知道会发生什么,object+ object= object而已。 把object列合并到category列上 接着上面的例子。...略坑,如果数据类型包含很多不存在的,尤其是在多个不同的category列上进行分组,将会极其损害性能。...0.501023 Name: float_1, dtype: float64 4、category列的索引 仍以上面例子举例,使用groupby-unstack实现了一个交叉表,species作为列,...为这个交叉表添加一个新列new_col,值为1。...使用.unstack()会把species索引移到列索引中(类似pivot交叉表的操作)。而当添加的新列不在species的分类索引中时,就会报错。
这里我们使用的是 Pandas 中的 value_counts 函数。它可以帮助我们自动统计某一列中不同类别出现的次数,而且还自动进行排序。为了显示的方便,我们只要求展示前10项内容。...调用 Pandas 的 str.replace 函数,我们可以让它自动将每一个地址都进行解析替换,并且把结果存入到了一个新的列名称,即 street 。...注意后三列是我们刚刚生成的。 我们先按照年度来看看抢劫犯罪数量的变化趋势。 robbery.groupby('year').size() ? 注意这里,数量最少的是 2019 年。看似是很喜人的变化。...好了,我们来绘制一下抢劫犯罪数量变化趋势折线图。 Pandas 的 plot 函数,默认状态下,就是绘制折线图。因此我们不需要加入参数。...这里用的是 Pandas 中的 unstack 函数,把内侧的分组索引(hour)转换到列上。
import numpy as np import pandas as pd 一、通过多级索引创建数据透视表 利用多级索引产生学生成绩表: r_index = pd.MultiIndex.from_product...补充:reindex用法 reindex的作用是创建一个符合新索引的新对象(默认不会修改原对象df2),它的一个用途是按新索引重新排序。...df2.reindex([(2016,1),(2017,2)]) 当现有数据无法匹配新的索引时,reindex将使用NaN填充。...数据透视表的效果可以通过groupby来实现,但有时候直接使用pivot_table方法建立数据透视表可能更方便些,而且额外提供了汇总功能。...columns:要在列上进行分组的序列、数组或DataFrame列。 values:可选参数,要聚合的值列。如果未指定,则将计算所有剩余列的计数/频率。
在实际的数据分析过程中,我们可能需要对数据进行清洗、转换和预处理,以满足特定的分析需求。Python提供了丰富的数据处理工具,如数据清洗、缺失值处理、异常值检测等,使得数据分析过程更加高效和准确。...第一个阶段,pandas对象中的数据会根据你所提供的一个或多个键被拆分(split)为多组。拆分操作是在对象的特定轴上执行的。...例如, DataFrame可以在其行(axis=0)或列(axis=1)上进行分组。然后,将一个函数应用(apply)到各个分组并产生一个新值。...下表是经过优化的groupby方法: 2.1. groupby的聚合函数 首先创建一个dataframe对象: 【例8】使用groupby聚合函数对数据进行统计分析。...关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进 行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。
同样的对行的索引方式也支持对列使用。 多级索引 多级索引提供了一种以一个较低维度的形式访问高维数据的方法,每次一个维度的索引都相当于对原数据进行一次降维。...pd 一个重要的方法是 reindex(),可以用来重新定义行/列索引的顺序以及内容(也可以用来增加新的index,该列或者行的值可以按照某种规则填充): import pandas as pd import...‐ stamps not contained in a time series to perform a range query: ''' ts[datetime(2011, 1, 7):] 需要注意的是切片访问相当于在源时间序列上创建一个新的...) print("根据key值列得到的指示变量:\n", pd.get_dummies(df['key'])) #可以调整prefix参数给指示变量加上前缀名称 字符串数据 对字符串的操作有使用字符串内置函数和...(移动函数) expanding(扩展函数) ewm(指数加权函数) 在数据分析的过程中,使用窗口函数能够提升数据的准确性,并且使数据曲线的变化趋势更加平滑,从而让数据分析变得更加准确、可靠。
用read_csv加载这个包含来自音乐流服务的数据的基本 CSV 文件:df = pandas.read_csv('music.csv')现在变量df是 pandas DataFrame:1.2 选择我们可以使用其标签选择任何列...:使用数字选择一行或多行:也可以使用列标签和行号来选择表的任何区域loc:1.3 过滤使用特定值轻松过滤行。...最简单的方法是删除缺少值的行:fillna()另一种方法是使用(例如,使用 0)填充缺失值。1.5 分组使用特定条件对行进行分组并聚合其数据时。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。Pandas轻松做到。
领取专属 10元无门槛券
手把手带您无忧上云