首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用 Pandas 在 Python 中绘制数据

在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。...Pandas 是 Python 中的标准工具,用于对进行数据可扩展的转换,它也已成为从 CSV 和 Excel 格式导入和导出数据的流行方法。 除此之外,它还包含一个非常好的绘图 API。...这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...我们使用的数据是 1966 年至 2020 年的英国大选结果: image.png 自行绘制的数据 在继续之前,请注意你可能需要调整 Python 环境来运行此代码,包括: 运行最新版本的 Python...(用于 Linux、Mac 和 Windows 的说明) 确认你运行的是与这些库兼容的 Python 版本 数据可在线获得,并可使用 Pandas 导入: import pandas as pd df

6.9K20

pandas 入门 1 :数据集的创建和绘制

我们将此数据集导出到文本文件,以便您可以获得的一些从csv文件中提取数据的经验 获取数据- 学习如何读取csv文件。数据包括婴儿姓名和1880年出生的婴儿姓名数量。...分析数据- 我们将简单地找到特定年份中最受欢迎的名称。 现有数据- 通过表格数据和图表,清楚地向最终用户显示特定年份中最受欢迎的姓名。...我们基本上完成了数据集的创建。现在将使用pandas库将此数据集导出到csv文件中。 df将是一个 DataFrame对象。...除非另有指明,否则文件将保存在运行环境下的相同位置。 df.to_csv? 我们将使用的唯一参数是索引和标头。将这些参数设置为False将阻止导出索引和标头名称。...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎的婴儿名称。plot()是一个方便的属性,pandas可以让您轻松地在数据框中绘制数据。我们学习了如何在上一节中找到Births列的最大值。

6.1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Pandas和NumPy实现数据获取

    以某城市地铁数据为例,通过提取每个站三个月15分钟粒度的上下客量数据,展示Pandas和Numpy的案例应用。...分钟粒度统计客流,给出了进站、出战、进出站客流;3、运营时间是从2:00-23:59,与地铁实际运营时间5:30-23:00不同,需要调整。...= '合计': target_col.append(i) print(target_col) 获取车站名和车站编号: # 获取车站名和车站编号 nfile = pd.read_excel...i,j]的方式定位第i行第j列的数据;第二种为通过file.values将file转换为ndarray的数据格式,由于可以事先知道数据每一列的具体含义,直接通过整数下标的方式访问数据。...代码中使用的是第二种方式,这是由于DataFrame的iloc[]函数访问效率低,当数据体量很大时,遍历整个表格的速度会非常慢,而将DataFrame转换为ndarray后,遍历整个表格的数据效率会有显著提升

    7910

    遇到“备份集中的数据库备份与现有XXX数据库不同”的错误

    大家好,又见面了,我是你们的朋友全栈君。...当在使用另外一台的数据库备份文件.bak恢复到本机数据库时,遇到“备份集中的数据库备份与现有XXX数据库不同”的错误,后直接登录本机SQL Server数据库master,新建查询,并执行以下命令:...data/zt20080720.bak’ WITH FILE = 1, NOUNLOAD, REPLACE, STATS = 10 GO 说明:XXX为你要恢复的数据库名称...,注意这里要登录master来执行该命令,如果登录xxx数据库,则提示xxx数据库正在被占用,无法恢复的错误。...当你使用的是两个媒体时,应该写成RESTORE DATABASE [SMS_Platform2] FROM DISK = N’D:/新建文件夹/SMS_Platform2.bak’,DISK

    1.4K10

    使用Python和Pandas处理网页表格数据

    使用Python和Pandas处理网页表格数据今天我要和大家分享一个十分实用的技能——使用Python和Pandas处理网页表格数据。...如果我们能够灵活地使用Python和Pandas这两个强大的工具,就能够快速、高效地对这些数据进行处理和分析。首先,我们需要了解什么是Python和Pandas。...而Pandas库是Python中用于数据处理和分析的重要工具,它提供了大量的功能和方法,能够方便地读取、处理和分析各种结构化数据。使用Python和Pandas处理网页表格数据的第一步是获取数据。...Pandas提供了各种导出数据的方法,比如保存为Excel、CSV、数据库等多种格式。通过上面的介绍,希望大家对使用Python和Pandas处理网页表格数据有了初步的了解。...最后,我们可以将处理好的数据保存为不同格式的文件,方便后续使用和分享。希望通过本文的分享,大家对如何使用Python和Pandas处理网页表格数据有了更深入的了解。

    27930

    5个可以帮助pandas进行数据预处理的可视化图表

    第1步-我们将导入pandas、matplotlib、seaborn和NumPy包,我们将使用这些包进行分析。我们需要散点图、自相关图、滞后图和平行图。...我们将使用“mpg”、“tips”和“attention”数据进行可视化。数据集是在seaborn中使用load_dataset方法加载的。...只要图中没有人口稠密的数据点,获得一个洞察力是非常有帮助的。在下面的代码中,我们绘制了“mpg”数据集中“Horsepower” 和“Acceleration”数据点之间的散点图。...在下面的代码中,我们将计算seaborn“mpg”数据集中所有变量之间的成对相关性,并将其绘制为热力图。 热力图是我个人最喜欢查看不同变量之间的相关性。...那些在媒体上跟踪我的人可能已经注意到我经常使用它。在下面的代码中,我们将计算seaborn“mpg”数据集中所有变量之间的成对相关性,并将其绘制为热力图。

    1.4K10

    Seaborn + Pandas带你玩转股市数据可视化分析

    前两个与得到的轴阵列有明显的对应关系; 将色调变量视为沿深度轴的第三个维度,其中不同的级别用不同的颜色绘制。 基本工作流程是FacetGrid使用数据集和用于构造网格的变量初始化对象。...PairGrid 成对关系子图 子图网格,用于在数据集中绘制成对关系。 此类将数据集中的每个变量映射到多轴网格中的列和行。...可以使用不同的axes-level绘图函数在上三角形和下三角形中绘制双变量图,并且每个变量的边际分布可以显示在对角线上。...它还可以使用hue参数表示条件化的附加级别,该参数以不同的颜色绘制不同的数据子集。...pandas可视化[2]中,可以使用Series和DataFrame上的plot方法,它只是一个简单的包装器 plt.plot(),另外还有一些有几个绘图功能在pandas.plotting 内。

    6.8K40

    “备份集中的数据库备份与现有的数据库不同”解决方法

    最主要就是要在“选项”中选择“覆盖现有数据库”,否则就会出现“备份集中的数据库备份与现有的数据库”的问题。 ?...以前一直使用SQL Server2000,现在跟潮流都这么紧,而且制定要求使用SQL Server2005,就在现在的项目中使用它了。...对于SQL Server 2005,有几个地方是要注意的,比方在还原数据库时,不像2000里边将数据库和文件区分的很细,统一均为文件,这就使还原的数据库文件制定为. bak。...那么想还原2000的数据库(备份数据库文件,无后缀名的),就需要自己手工选择。 ?...选择下拉框中的“所有文件”,这时就会显示“备份数据库文件”了,选择-确定 最主要就是要在“选项”中选择“覆盖现有数据库”,否则就会出现“备份集中的数据库备份与现有的数据库”的问题。

    17.6K10

    数据科学篇| Pandas库的使用

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...另一方面,如果我们日常的数据清理工作不是很复杂的话,你通常用几句 Pandas 代码就可以对数据进行规整。 Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包。...下面主要给你讲下Series 和 DataFrame 这两个核心数据结构,他们分别代表着一维的序列和二维的表结构。基于这两种数据结构,Pandas 可以对数据进行导入、清洗、处理、统计和输出。...数据结构Series 和 Dataframe Serie Series 是个定长的字典序列。说是定长是因为在存储的时候,相当于两个 ndarray,这也是和字典结构最大的不同。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。

    6.7K20

    Pandas库常用方法、函数集合

    Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。...这里列举下Pandas中常用的函数和方法,方便大家查询使用。...:绘制散点图 pandas.plotting.andrews_curves:绘制安德鲁曲线,用于可视化多变量数据 pandas.plotting.autocorrelation_plot:绘制时间序列自相关图...pandas.plotting.bootstrap_plot:用于评估统计数据的不确定性,例如均值,中位数,中间范围等 pandas.plotting.lag_plot:绘制时滞图,用于检测时间序列数据中的模式...、趋势和季节性 pandas.plotting.parallel_coordinates:绘制平行坐标图,用于展示具有多个特征的数据集中各个样本之间的关系 pandas.plotting.scatter_matrix

    31610

    Python中得可视化:使用Seaborn绘制常用图表

    Seaborn提供以下功能: 面向数据集的API来确定变量之间的关系。 线性回归曲线的自动计算和绘制。 它支持对多图像的高级抽象绘制。 可视化单变量和双变量分布。...深色背景的分布图 2.饼图和柱状图 饼图通常用于分析数字变量在不同类别之间如何变化。 在我们使用的数据集中,我们将分析内容Rating栏中的前4个类别的执行情况。...Rating栏的条形图 与饼图类似,我们也可以定制柱状图,使用不同的柱状图颜色、图表标题等。 3.散点图 到目前为止,我们只处理数据集中的一个数字列,比如评级、评论或大小等。...但是,如果我们必须推断两个数字列之间的关系,比如“评级和大小”或“评级和评论”,会怎么样呢? 当我们想要绘制数据集中任意两个数值列之间的关系时,可以使用散点图。...让我们为数据集的评论、大小、价格和评级列创建一对图。 我们将在代码中使用sns.pairplot()一次绘制多个散点图。

    6.7K30

    圈图 | 不同品种的基因型数据绘制PCA图和聚类分析图

    PCA是降维的一种方法。 本次再增加一下聚类的形式。 很多软件可以分析PCA,这里介绍一下使用plink软件和R语言,进行PCA分析,并且使用ggplot2绘制2D和3D的PCA图。...绘制后的图如下: 2-D PCA图: ? 图片解释,将每个品种用不同的颜色表示,同时绘制置信区间圆圈,X坐标是PC1,解释24.9%的变异,Y坐标是PC2,解释10.61%的变异。...可以看到,三个品种在PCA图里面分的比较开,C品种的有两个A和B的点,应该是异常数据。 基因型数据: 共有3个品种A,B,C,共有412个个体。...,将其转化为0,1,2的形式 2,计算G矩阵 3,计算PCA的特征向量和特征值 4,根据特征值计算解释百分比 5,根据特征向量和品种标签,进行PCA的绘制 绘制代码如下: 首先,使用plink命令...然后使用R语言,计算PCA,并绘制PCA图。

    2.1K20

    pandas 图形可视化大全

    pandas的可视化方法,分为图形可视化和表格可视化。 基础可视化 一种是针对series和dataframe的绘制方法,可以一行代码快速绘图。...,这些曲线是使用样本的属性作为傅里叶级数的系数创建的,通过为每个类对这些曲线进行不同的着色,可以可视化数据聚类。...(df, class_column='target') 3)平行坐标图 与安德鲁斯曲线图类似,平行坐标图(parallel_coordinates)也是一种用于绘制多元数据的绘图方法,通过平行坐标可以看到数据中的聚类...,它围绕圆周均匀地分布每个特征,并且标准化了每个特征值,一般使用此方法来检测类之间的关联。...从数据集中选择指定大小的随机子集,并为这些子集计算出相关的统计信息,指定重复的次数。

    24710

    数据科学篇| Pandas库的使用(二)

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...另一方面,如果我们日常的数据清理工作不是很复杂的话,你通常用几句 Pandas 代码就可以对数据进行规整。 Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包。...下面主要给你讲下Series 和 DataFrame 这两个核心数据结构,他们分别代表着一维的序列和二维的表结构。基于这两种数据结构,Pandas 可以对数据进行导入、清洗、处理、统计和输出。...数据结构Series 和 Dataframe Serie Series 是个定长的字典序列。说是定长是因为在存储的时候,相当于两个 ndarray,这也是和字典结构最大的不同。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。

    5.9K20

    ​Pandas库的基础使用系列---数据读取

    前言欢迎各位小伙伴一起继续学习,我们上期和大家简单的介绍了一下JupyterLab的使用,从今天开始我们就要正式开始pandas的学习了。...为了和大家能使用同样的数据进行学习,建议大家可以从国家统计局的网站上进行下载。...,我们下载Excel和CSV这两种格式的数据,并保存在data目录下。...我们新建一个day01的目录用来保存我们的notebook选择默认的即可我们为了能使用pandas,我们需要通过pip 进行安装,在notebook中安装,还是比较方便的,只需输入以下内容!...结尾好了今天的内容就是这些,我们介绍了如何安装pandas这个库,以及如何读取csv和xls文件。赶快动手实践一下吧,我是Tango,一个热爱分享技术的程序猿,我们下期见。

    23910

    数据科学篇| Pandas库的使用(二)

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...另一方面,如果我们日常的数据清理工作不是很复杂的话,你通常用几句 Pandas 代码就可以对数据进行规整。 Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包。...下面主要给你讲下Series 和 DataFrame 这两个核心数据结构,他们分别代表着一维的序列和二维的表结构。基于这两种数据结构,Pandas 可以对数据进行导入、清洗、处理、统计和输出。...数据结构Series 和 Dataframe Serie Series 是个定长的字典序列。说是定长是因为在存储的时候,相当于两个 ndarray,这也是和字典结构最大的不同。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。

    4.5K30
    领券