本期作者:Derrick Mwiti 本期翻译:HUDPinkPig 未经授权,严禁转载 编者按:本文介绍了如何使用LSTM模型进行时间序列预测。...要求数据有特殊格式,通常是3D数组格式。...我们需要导入Keras的一些模型来构建LSTM 1、顺序初始化神经网络 2、添加一个紧密连接的神经网络层 3、添加长短时记忆层(LSTM) 4、添加dropout层防止过拟合 from keras.models...import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import...读者可以自行测试这些方法的准确率,并与Keras LSTM的测试结果进行比较。
作者 | Ray 编辑 | 磐石 出品 | 磐创AI技术团队 【磐创AI导读】:keras系列第六篇,本文主要介绍了LSTM与双向LSTM网路的原理和具体代码实现。...目录 RNN的长期依赖问题 LSTM原理讲解 双向LSTM原理讲解 Keras实现LSTM和双向LSTM 一、RNN的长期依赖问题 在上篇文章中介绍的循环神经网络RNN在训练的过程中会有长期依赖的问题...类似于输入门两部分实现更新一样,输出门也是需要使用sigmoid激活函数确定哪个部分的内容需要输出,然后再使用tanh激活函数对细胞状态的内容进行处理(因为通过上面计算得到的Ct每个值不是在tanh的取值范围...最后在每个时刻结合Forward层和Backward层的相应时刻输出的结果得到最终的输出,用数学表达式如下: 四、Keras实现LSTM和双向LSTM Keras对循环神经网络的支持和封装在上一篇文章已经讲解了...,在这里仅介绍两个模型的搭建,如有疑问请阅读上一篇文章--使用Keras进行深度学习:(五)RNN和双向RNN讲解及实践 (参考资料:https://colah.github.io/posts/2015
首先,我们导入将在本文中使用的必需库: from numpy import arrayfrom keras.preprocessing.text import one_hotfrom keras.preprocessing.sequence...3D形状,即(样本,时间步长,特征)。...训练模型后,我们可以对新实例进行预测。 假设我们要预测输入为30的输出。实际输出应为30 x 15 =450。 首先,我们需要按照LSTM的要求将测试数据转换为正确的形状,即3D形状。...通过双向LSTM解决方案 双向LSTM是一种LSTM,可以从正向和反向两个方向的输入序列中学习。最终的序列解释是向前和向后学习遍历的串联。让我们看看使用双向LSTM是否可以获得更好的结果。...通过双向LSTM解决方案 这是简单双向LSTM的训练脚本,以及用于对测试数据点进行预测的代码: from keras.layers import Bidirectional model = Sequential
首先,我们导入将在本文中使用的必需库: from numpy import arrayfrom keras.preprocessing.text import one_hotfrom keras.preprocessing.sequence...3D形状,即(样本,时间步长,特征)。...训练模型后,我们可以对新实例进行预测。 假设我们要预测输入为30的输出。实际输出应为30 x 15 =450。首先,我们需要按照LSTM的要求将测试数据转换为正确的形状,即3D形状。...通过双向LSTM解决方案 双向LSTM是一种LSTM,可以从正向和反向两个方向的输入序列中学习。最终的序列解释是向前和向后学习遍历。让我们看看使用双向LSTM是否可以获得更好的结果。...通过双向LSTM解决方案 这是简单双向LSTM的训练脚本,以及用于对测试数据点进行预测的代码: from keras.layers import Bidirectional model = Sequential
LSTM 网络工作示意图 LSTM 的使用背景 当你读这篇文章的时候,你可以根据你对前面所读单词的理解来理解上下文。...而这正是 LSTM 可以做到的。 编程实现 LSTM 本文将通过 LSTM 网络开发一个故事生成器模型。主要使用自然语言处理(NLP)进行数据预处理,使用双向LSTM进行模型构建。...使用的是运行在 TensorFlow 2.0 的 Keras 框架。...Embedding, LSTM, Dense, Dropout, Bidirectional from tensorflow.keras.preprocessing.text import Tokenizer...首先,用户输入初始语句,然后将该语句进行预处理,输入到 LSTM 模型中,得到对应的一个预测单词。重复这一过程,便能够生成对应的故事了。
关于keras使用GPU训练的环境搭建问题,可以参考这篇文章(Run Keras on Mac OS with GPU,http://blog.wenhaolee.com/run-keras-on-mac-os-with-gpu...图1 基础模型(1层LSTM优化器RMSprop)训练20次 训练好后,我们使用msr_test的测试数据进行分词,并将最终的分词结果使用icwb2自带的脚本进行测试,结果如下: ?...图3 1层LSTM优化器Adam训练20次 可以看到,Adam在训练过程中的精度就已经高于RMSprop,使用icwb2的测试结果为: ?...注意,第一层LSTM有个return_sequences =True可以将最后一个结果出入到输出序列,保证输出的tensor是3D的,因为LSTM的输入要求是3D的tensor。...两层LSTM模型训练过程如下: ? 图5 两层LSTM优化器Adam训练20次的模型 可以看到,两层LSTM使得模型更加复杂,训练时常也增加不少。模型训练后,使用icwb2的测试结果为: ?
基本简介 LSTM_learn 使用Keras进行时间序列预测回归问题的LSTM实现 数据 数据来自互联网,这些数据用于预测航空公司的人数,我们使用LSTM网络来解决这个问题 关于此处模型构建...,只对keras部分代码做重点的介绍 模型构建与编译 def build_model(): # input_dim是输入的train_x的最后一个维度,train_x的维度为(n_samples...(input_dim=1, output_dim=50, return_sequences=True)) #2.2.2 keras model.add(LSTM(input_shape=...keras 中设置两种参数的讨论 1.return_sequences=False && return_state=False h = LSTM(X) Keras API 中,return_sequences...参考文献: lstm中文网:https://keras.io/layers/recurrent/#lstm https://blog.csdn.net/yyb19951015/article/details
选自TowardsDataScience 作者:Nimesh Sinha 机器之心编译 参与:Nurhachu Null、路雪 本文对 LSTM 进行了简单介绍,并讲述了如何使用 LSTM 在 Keras...c) σ:Sigmoid 层 d) tanh:tanh 层 e) h(t-1):上一个 LSTM 单元的输出 f) c(t-1):上一个 LSTM 单元的记忆 g) X(t):当前输入 h) c(t):...使用 LSTM 进行情感分析的快速实现 这里,我在 Yelp 开放数据集(https://www.yelp.com/dataset)上使用 Keras 和 LSTM 执行情感分析任务。...现在,我在训练集上训练我的模型,然后在验证集上检验准确率。...我们可以过滤特定的行业(如餐厅),并使用 LSTM 做情感分析。 2. 我们可以使用更大的数据集和更多的 epoch,来得到更高的准确率。 3. 我们可以使用更多隐藏密集层来提升准确率。
如何在LSTM上使用该装饰器,应该在何时使用? 当您在Keras GitHub issues和StackOverflow上搜索该包装饰器层的讨论时,您的困惑将会是多个层面的。...例如,在问题“ 何时以及如何使用TimeDistributedDense ”中,fchollet(Keras的作者)解释道: TimeDistributedDense对3D张量的每个时间步应用相同的Dense...(1个epoch等于使用训练集中的全部样本进行一次训练,译者注) 下面提供了完整的代码清单: from numpy import array from keras.models import Sequential...LSTM的输入必须是三维的。我们可以将2D序列重塑为具有1个样本、5个时间步长和1个特征的3D序列。我们将输出定义为具有5个特征的1个样本。...使用TimeDistributed装饰器层时要记住两点: 输入必须(至少)是3D。
Keras 是一个用 Python 编写的,高级的神经网络 API,使用 TensorFlow,Theano 等作为后端。快速,好用,易验证是它的优点。...可以使用 input_shape 这个关键字来指定第一层输入的 shape,input_shape 是一个 tuple 类型的数据(可以是整数也可以填入 None,如果填入 None 则表示此位置可能是任何正整数...)但需要注意的是,数据的 batch大小不应包含在其中 有些 2D 层,可以使用 Dense,指定第一层输入维度 input_dim 来隐含的指定输入数据的 shape,它是一个 Int 类型的数据。...还有一些 3D 的时域层支持通过参数 input_dim 和 input_length 来指定输入 shape。...训练模型一般使用fit()函数: fit(self, x, y, batch_size=32, epochs=10, verbose=1, callbacks=None
在这篇文章中,您将了解创建、训练和评估Keras中长期记忆(LSTM)循环神经网络的分步生命周期,以及如何使用训练有素的模型进行预测。...3D 数据集。...重要的是,在堆叠 LSTM 图层时,我们必须为每个输入输出一个序列而不是单个值,以便后续 LSTM 图层可以具有所需的 3D 输入。...反向传播算法要求为网络指定训练轮数或对训练数据集。 每一轮训练可以划分为称为批处理的输入输出模式对。这将定义在一轮训练内更新权重。这也是一种效率优化,确保一次不会将太多的输入数据加载到内存中。...总结 在这篇文章中,您发现了使用 Keras 库的 LSTM 循环神经网络的 5 步生命周期。 具体来说,您了解到: 1、如何定义、编译、拟合、评估和预测 Keras 中的 LSTM 网络。
一些3D的时域层支持通过参数input_dim和input_length来指定输入shape。...---- 训练 Keras以Numpy数组作为输入数据和标签的数据类型。训练模型一般使用fit函数,该函数的详情见这里。下面是一些例子。...---- 例子 这里是一些帮助你开始的例子 在Keras代码包的examples文件夹中,你将找到使用真实数据的示例模型: CIFAR10 小图片分类:使用CNN和实时数据提升 IMDB 电影评论观点分类...:使用LSTM处理成序列的词语 Reuters(路透社)新闻主题分类:使用多层感知器(MLP) MNIST手写数字识别:使用多层感知器和CNN 字符级文本生成:使用LSTM ......采用状态LSTM的相同模型 状态(stateful)LSTM的特点是,在处理过一个batch的训练数据后,其内部状态(记忆)会被作为下一个batch的训练数据的初始状态。
下面的代码主要分为以下几步: LSTM数据预处理 搭建LSTM模型训练 模型预测 数据预处理这块参考上面的链接就可以,而模型的搭建是基于keras的模型,稍微有点疑惑的地方就是数据的构建(训练集和测试集...基于以上的主要问题,在完全没有未来数据参与下进行训练,进行修改后的数据处理过程如下:全集—分割—训练集归一训练—验证集使用训练集std&mean进行归一完成预测。...下面又尝试了:全集—分割—训练集归一shuffle并记录std&mean—训练—验证集使用训练集std&mean进行归一完成预测。...2. keras的lstm层函数 keras.layers.recurrent.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid...2.2 输入shape : 形如(samples,timesteps,input_dim)的3D张量 2.3 输出shape: 如果return_sequences=True:返回形如(samples,
本文中,作者将尝试对这一问题做出简短解答;本文预设你已有一些循环网络和 Keras 的使用经验。...次要案例:当输入序列和输出序列长度相同 当输入序列和输出序列长度相同时,你可以通过 Keras LSTM 或者 GRU 层(或者其中的堆栈)简单地实现模型。...我想使用 GRU 层代替 LSTM,应该怎么做? 这实际上变简单了,因为 GRU 只有一个状态,而 LSTM 有两个状态。...一些案例中可能不能使用 teacher forcing,因为你无法获取完整的目标序列,比如,在线训练非常长的语句,则缓冲完成输入-目标语言对是不可能的。...在这种情况下,你要通过将解码器的预测重新注入解码器输入进行训练,就像我们进行推断时所做的那样。
我一直在探索深度学习的一个用例是使用Python训练Keras模型,然后使用Java产生模型。...链接:https://deeplearning4j.org/docs/latest/keras-import-overview 本文概述了在Python中训练Keras模型,并使用Java进行部署。...GitHub:https://github.com/bgweber/DeployKeras/tree/master 模型训练 第一步是使用Python中的Keras库训练模型。...Java安装程序 要使用Java部署Keras模型,我们将使用Deeplearing4j库。它提供了Java深度学习的功能,可以加载和利用Keras训练的模型。...随着库开始标准化模型格式,让使用单独的语言进行模型训练和模型部署成为可能。这篇文章展示了,用Python中Keras库训练的神经网络可以使用Java中的DL4J库进行批量和实时的预测
致谢声明 1.本文学习fizyr的github工程《keras-retinanet》,此github工程链接:https://github.com/fizyr/keras-retinanet 此链接中已经具备充分且详细的工程使用指导...在文件夹keras_RetinaNet中运行cmd,即在Windows资源管理器的路径处输入cmd,按Enter键运行。...在文件夹keras_RetinaNet中运行cmd,即在Windows资源管理器的路径处输入cmd,按Enter键运行。...image.png 2.模型训练 2.1 下载并安装Microsoft C++ build 14.0 只有先安装C++的编译工具,才能在Windows系统上安装keras_retinanet库。...image.png 2.3 开始训练 在文件夹keras_RetinaNet中运行cmd,即在Windows资源管理器的路径处输入cmd,按Enter键运行,如下图所示: ?
如果有阅读过我之前的博客,可以发现使用 LSTM作单类的时间序列异常检测也是基于对于时间序列的预测进行 登堂入室LSTM:使用LSTM进行简单的时间序列异常检测 本次我们要进行的是 使用 注意力机制 +...LSTM 进行时间序列预测,项目地址为Keras Attention Mechanism 对于时间步的注意力机制 首先我们把它git clone 到本地,然后配置好所需环境 笔者的 tensorflow...所以当我们使用这样的数据去进行 注意力机制 LSTM 的训练,我们希望得到的结果是 注意力层 主要关注第11个timestep 而对其他timestep 的关注度较低。...直接运行 attention_lstm.py 脚本 此时的网络结构为: 可以看到是在 LSTM 层之后使用了注意力机制 最后会汇总画一张图 可以看到 可以看到注意力的权重主要汇总在了第...,也是相同的) 对于时间步和输入维的注意力机制 待补充 注:参考 keras-attention-mechanism 以及 Keras中文文档 代码已上传到我的github 发布者:全栈程序员栈长
本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。...这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。 通过本教程,你将学会如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。...你还需要使用 TensorFlow 或 Theano 后端安装 Keras(2.0 或更高版本)。...为了加快此次讲解的模型训练,我们将仅使用第一年的数据来拟合模型,然后用其余 4 年的数据进行评估。 下面的示例将数据集分成训练集和测试集,然后将训练集和测试集分别分成输入和输出变量。...最后,将输入(X)重构为 LSTM 预期的 3D 格式,即 [样本,时间步,特征]。 ?
开始使用 Keras Sequential 顺序模型 顺序模型是多个网络层的线性堆叠。...某些 2D 层,例如 Dense,支持通过参数 input_dim 指定输入尺寸,某些 3D 时序层支持 input_dim 和 input_length 参数。...Keras 模型在输入数据和标签的 Numpy 矩阵上进行训练。...为了训练一个模型,你通常会使用 fit函数。文档详见此处。...前两个 LSTM 返回完整的输出序列,但最后一个只返回输出序列的最后一步,从而降低了时间维度(即将输入序列转换成单个向量)。 ?
领取专属 10元无门槛券
手把手带您无忧上云