首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用静脉识别节点类型

静脉识别节点是一种基于生物特征的身份验证技术,通过扫描和分析人体手指或手掌上的静脉图像来识别个体身份。它利用每个人独特的静脉模式来进行身份验证,具有高度的准确性和安全性。

静脉识别节点可以分为以下几种类型:

  1. 静脉识别传感器节点:这种节点包含用于采集和扫描静脉图像的传感器。传感器通常使用红外线或近红外线光源来照射手指或手掌,然后通过摄像头或光电传感器来捕捉静脉图像。常见的静脉识别传感器包括指纹仪、手掌静脉识别仪等。
  2. 静脉识别处理节点:这种节点负责对采集到的静脉图像进行处理和分析。它使用图像处理算法和模式识别技术来提取静脉模式,并将其与预先注册的静脉模板进行比对。通过比对算法,可以判断是否匹配成功并验证个体身份。
  3. 静脉识别认证节点:这种节点用于进行身份验证和访问控制。它与其他系统或设备进行集成,例如门禁系统、电脑登录系统等。当个体通过静脉识别认证节点时,节点会将采集到的静脉图像与已注册的静脉模板进行比对,如果匹配成功,则允许个体进行相应的操作或访问。

静脉识别技术在安全性、准确性和便利性方面具有许多优势,适用于各种场景,包括但不限于以下几个方面:

  1. 身份认证和访问控制:静脉识别可以用于替代传统的密码、卡片或钥匙等身份验证方式,提供更高的安全性和便利性。例如,可以用于企业的门禁系统、电脑登录系统等。
  2. 金融交易安全:静脉识别可以用于保护金融交易的安全性,例如在银行柜台或自动取款机上进行身份验证,以防止欺诈和非法访问。
  3. 医疗保健:静脉识别可以用于医疗保健领域,例如用于患者身份验证、药物配送控制等,提高医疗服务的安全性和效率。
  4. 公共交通和出入境管理:静脉识别可以用于公共交通系统的身份验证,例如地铁闸机、公交车刷卡等,以及出入境管理中的边境检查和护照控制。

腾讯云提供了一系列与静脉识别相关的产品和服务,例如人脸识别、指纹识别等。您可以访问腾讯云官方网站了解更多关于这些产品的详细信息和使用方式。

参考链接:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

刷脸和指纹识别out啦,这些公司正在用静脉识别技术颠覆金融业

大数据文摘作品 作者:Kate 编译:吴蕾,行者,任杰 日前,生物识别技术越来越受欢迎,日益成为全球金融服务行业的宠儿。 据估计,到2021年,生物识别市场有望达到300亿美元的价值。而且,该技术可能是目前最便捷的方法,因为可以为用户省去记住数字,代码或密码的烦恼。 为了利用这项技术,部分银行已经开始尝试对之进行测试,当然日前仅局限在少数用户和特定市场。或许过不了多久,生物识别技术将会成为身份认证的主流形式,复杂密码形式将一去不复返。 当前,在市场上,还活跃着一些其他主流方法,如指纹识别。这些方法中,静脉

02
  • 手指静脉识别质量评估预处理,手指静脉识别前预处理尺寸归一化切割图像部分大概过程浅析

    因为某些私人原因 只能讲这样以图片的形式将我写的手指静脉预处理 切割部分的文档分享出来。 百度百科: 手指静脉识别技术是一种新的生物特征识别技术,它利用手指内的静脉分布图像来进行身份识别。 工作原理,是依据人类手指中流动的血液可吸收特定波长的光线,而使用特定波长光线对手指进行照射,可得到手指静脉的清晰图像。利用这一固有的科学特征,将实现对获取的影像进行分析、处理,从而得到手指静脉的生物特征,再将得到的手指静脉特征信息与事先注册的手指静脉特征进行比对,从而确认登录者的身份。 手指静脉图像的识别和比对,由一块目

    09

    RITE2013——视网膜图像血管树提取

    视网膜血管系统是指示眼科疾病的重要结构。然而,虽然存在许多用于分割视网膜血管的方法,但实际上专注于将视网膜血管分成动脉树和静脉树的方法要少得多。有一种方法,首先对血管进行分段和细化,然后使用局部邻居信息来识别分叉和交叉以构建树。还有一种分组算法,通过使用扩展卡尔曼滤波器最大化血管的连续性,迭代地将未分组的片段连接到分组的片段。还有一种结构映射方法,首先检测地标,然后使用基于路径的图方法来解决问题。还有使用建模为SAT问题的图来分离动脉树和静脉树。可以动态改变图结构来解决一些冲突,但是需要手动输入来初始化标签,并且如果某些冲突无法解决。这些现有方法通常依赖于局部和/或贪婪决策,并且相应地容易受到局部错误的影响,特别是在局部图像信息模糊和/或自动血管分割中不准确的情况下。一些常见错误包括:(a) 当一根血管失踪或断开连接时,会错误分类为分叉点;(b)由于血管只部件缺失而使血管断开;(c)识别由于虚假血管造成的虚假分叉和交叉。此外,复杂的地标很难用局部知识来识别。

    01

    手背静脉识别的图像处理算法

    手背静脉识别技术作为一种全新的特征识别技术,相比于传统的生物识别技术(如指纹识别)具有许多明显的优势,然而对于该技术的研究尚处于刚刚起步阶段,使用计算机来直接进行静脉识别与身份匹配仍然较为困难,为了方便后续特征识别,提高静脉识别的准确度和优越性,有必要对获取的静脉图像进行一系列处理,得到静脉的骨架结构。 题目主要要求为: 1.对采集图像进行背景去除,取得手背部分; 2.计算采集手背的质心并提取手背有效区域; 3.提取手背静脉走势; 4.对提取的静脉进行细化处理,去除毛刺; 5.改进算法,提高程序的通用性和适普性; 6.在图像分割上尝试不同的方法,并比较结果的好坏。

    04

    白质脑功能网络图论分析:抑郁症分类和预测的神经标记

    脑连接体拓扑结构异常是重度抑郁障碍(MDD)病理机制的基础。然而,越来越多的证据只关注脑灰质中的功能组织,而忽略了已被证实具有可靠稳定拓扑组织的白质中的功能信息。本研究旨在从一个新的视角-白质WM功能连接组拓扑结构来表征MDD的功能模式中断。我们对发现的91例未服药MDD患者和225例健康对照(HC)和复制样本(34例未服药MDD患者和25例HC)进行了病例对照、横断面静息状态功能磁共振成像研究。在128个解剖区域构建WM功能网络,并使用基于图论的方法分析其全局拓扑性质(如小世界性)。在系统层面,普遍存在的小世界架构和局部信息处理能力在未服药的MDD患者中可检测到,但不如在HC中显著,这意味着MDD白质功能连接体向随机化转变。在一个独立样本中得到了一致的结果。在临床应用中,发现样本中WM功能连接组的小世界拓扑对疾病严重程度有预测作用(汉密尔顿抑郁量表)(r = 0.34, p = 0.001)。此外,基于拓扑的分类模型可以推广用于区分复制样本中的MDD患者和HC(准确率,76%;敏感性,74%;特异性,80%)。我们的结果强调了可复制的拓扑移位的WM功能连接组结构,并提供了可能的临床应用,其中包括最佳小世界拓扑作为MDD患者分类和预测的潜在神经标志物。

    03

    单细胞RNA-seq分析小鼠肺动脉高压内皮细胞

    结果:小鼠特殊造模进行单细胞数据分析,并对不同内皮细胞进行细分得到相应的七个主要肺内皮亚型(动脉,静脉,毛细血管A,毛细血管B,淋巴管,增殖和“Sftp”) 。基于SCrna-seq和BulkRNA-seq两种分析得出抗原加工和呈递该通路中在肺高压造模小鼠的血管相关亚群细胞的特异性。后续确定毛细内皮B亚群对于细胞凋亡、迁移和血管生成基因有关也侧面证明了该亚群在肺高压疾病中的特殊性确定了一些特异性基因(Aqp1,Cav1,Bmpr2, Eng)并推断在人与大鼠中是否也具有特异性。进一步分析血管相关亚群探究确定了一个动静脉轴的差异变化确定了某些基因(Sgk1, Cd34, Sparc, Sparcl1)在疾病中对于动静脉轴的一个影响作用。

    02

    CyTran: Cycle-Consistent Transformers forNon-Contrast to Contrast CT Translation

    我们提出了一种新的方法,将不成对的对比度计算机断层扫描(CT)转换为非对比度CT扫描,反之亦然。解决这项任务有两个重要的应用:(i)为注射造影剂不是一种选择的患者自动生成对比CT扫描,以及(ii)通过在配准前减少造影剂引起的差异来增强对比CT和非对比CT之间的对准。我们的方法基于循环一致的生成对抗性卷积变换器,简称CyTran。由于循环一致性损失的积分,我们的神经模型可以在未配对的图像上进行训练。为了处理高分辨率图像,我们设计了一种基于卷积和多头注意力层的混合架构。此外,我们还介绍了一个新的数据集Coltea-Lung-CT-100W,其中包含从100名女性患者中收集的3D三相肺部CT扫描(共37290张图像)。每次扫描包含三个阶段(非造影、早期门静脉和晚期动脉),使我们能够进行实验,将我们的新方法与最先进的图像风格转移方法进行比较。我们的实证结果表明,CyTran优于所有竞争方法。此外,我们表明CyTran可以作为改进最先进的医学图像对齐方法的初步步骤。

    02

    AutoPET2024——多示踪剂多中心全身 PET/CT 中的自动病灶分割

    第三届 autoPET 挑战赛是在多示踪剂多中心环境中进一步完善正电子发射断层扫描/计算机断层扫描 (PET/CT) 扫描中肿瘤病变的自动分割。在过去的几十年里,PET/CT 已成为肿瘤诊断、管理和治疗计划的关键工具。在临床常规中,医学专家通常依赖 PET/CT 图像的定性分析,尽管定量分析可以实现更精确和个性化的肿瘤表征和治疗决策。临床采用的一个主要方法是病灶分割,这是定量图像分析的必要步骤。手动执行非常繁琐、耗时且成本高昂。机器学习提供了对 PET/CT 图像进行快速、全自动定量分析的潜力,正如之前在前两个 autoPET 挑战中所证明的那样。基于在这些挑战中获得的见解,autoPET III 扩大了范围,以满足模型在多个示踪剂和中心之间推广的关键需求。为此,提供了更多样化的 PET/CT 数据集,其中包含从两个不同临床站点获取的两种不同示踪剂的图像-前列腺特异性膜抗原 (PSMA) 和氟脱氧葡萄糖 (FDG)(如下图)。在本次挑战中,提供了两个奖项类别任务。在第一类奖项中,任务是开发适用于两种不同追踪器的强大分割算法。在第二类奖项中,讨论了数据质量和预处理对算法性能的重要性。在这里,鼓励参与者使用创新的数据管道增强基线模型,促进以数据为中心的自动化 PET/CT 病变分割方法的进步。加入 autoPET III,为 PET/CT 中基于深度学习的强大医学图像分析铺平道路,优化肿瘤学诊断和个性化治疗指导。

    01

    眼神科技CTO江武明:多模态统一身份认证——数字化的入口和枢纽|量子位·视点分享回顾

    视点 发自 凹非寺 量子位 | 公众号 QbitAI 近年来,指纹、人脸、虹膜等生物识别技术,在智慧城市、治安治理、民生服务等行业广泛应用,为民众带来安全便捷同时,也助力了产业智能升级和降本增效。 其中生物识别技术作为人与数字资产关联的基础技术,是数字化的入口和枢纽。随着产业数字化和电子证照应用的提振加速,面对海量数据下的高安全与强隐私需求,单模态生物识别技术略显“乏力”。 与此同时,经历了近十年飞速发展的人工智能,作为赋能型技术,正需要找到适应的行业和场景体现出其独特的价值。 那么,数字时代的增强身份认证

    02

    《碟中谍5》的科幻场景变为现实,银河水滴要用步态识别实现身份认证

    不知道看过《碟中谍5》的朋友对其中一个场景是否还有印象:阿汤哥的搭档在破解了指纹解锁、三重物理旋转密码锁挑战后,迎来了“步态识别锁”。这项挑战无疑是对生物体的身体及步态进行360度无死角扫描,用来判断和识别进入者的身份。 作为压轴挑战,我们能够猜测出步态识别在身份认证方面是有一定的优势的。有资料显示,现有的生物特征包括生理特征及行为特征。生理特征包括人脸、指纹、DNA、虹膜以及静脉等等,行为特征包括语音、步态和笔迹等等,这些生物特征都具有普遍性、唯一性和稳定性,能够用于不同场景下的身份识别和认证。 尽管人脸

    07
    领券