首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于深度学习的图像目标识别预测 | CV | Tensorflow | Keras

在人工智能研究的大潮中,如何模拟人类对于静态或动态目标的有效识别预测一直是研究热点,通过智能技术实现对于目标特征的学习并对特定目标进行快速识别,预测得出目标识别概率,实现基于深度学习模型在复杂背景...基础操作 首先,安装Keras、TensorFlow,将TensorFlow作为后端,先去安装TensorFlow。...一旦,安装完成了 TensorFlow,只需要使用 pip 很容易的安装 Keras。...还可以将多个数据集存储在单个文件中,遍历他们或者查看 .shape 和 .dtype 属性。 如果要保存训练好的权重,那么可以直接使用 save_weights 函数。...在进行图像目标识别时可以使用的模型有很多,但是通常图像目标识别对于计算资源要求很高,而equeezeNet 是一个非常了不起的网络架构,它的显著点不在于对正确性有多少的提高,而是减少了计算量。

1.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用TensorFlow.js进行时间序列预测

    训练神经网络 现在训练数据准备好了,是时候为时间序列预测创建一个模型,为实现这个目的,将使用TensorFlow.js框架。...该模型将使用Adam(研究论文)进行训练,这是一种流行的机器学习优化算法。均方根误差将决定预测值与实际值之间的差异,因此模型能够通过最小化训练过程中的误差来学习。 这是上述模型的代码片段。...验证和预测 现在模型已经过训练,现在是时候用它来预测未来的值,它是移动平均线。实际上使用剩余的30%的数据进行预测,这能够看到预测值与实际值的接近程度。...绿线表示验证数据的预测 这意味着该模型看不到最后30%的数据,看起来该模型可以很好地绘制与移动平均线密切相关的数据。 结论 除了使用简单的移动平均线之外,还有很多方法可以进行时间序列预测。...未来可能的工作是使用来自各种来源的更多数据来实现这一点。 使用TensorFlow.js,可以在Web浏览器上进行机器学习,这实际上非常酷。

    1.8K20

    基于TensorFlow和Keras的图像识别

    简介 TensorFlow和Keras最常见的用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。 定义 如果您不了解图像识别的基本概念,将很难完全理解本文的内容。...TensorFlow/Keras TensorFlow是Google Brain团队创建的一个Python开源库,它包含许多算法和模型,能够实现深度神经网络,用于图像识别/分类和自然语言处理等场景。...Keras是一个高级API(应用程序编程接口),支持TensorFlow(以及像Theano等其他ML库)。...其设计原则旨在用户友好和模块化,尽可能地简化TensorFlow的强大功能,在Python下使用无需过多的修改和配置 图像识别(分类) 图像识别是指将图像作为输入传入神经网络并输出该图像的某类标签。...最大池化获取单个滤波器中像素的最大值。假设使用卷积核大小为2×2的滤波器,将会丢失3/4的信息。 使用像素的最大值以便考虑可能的图像失真,并且减小图像的参数/尺寸以便控制过度拟合。

    2.8K20

    使用Keras进行深度学习:(一)Keras 入门

    导语 Keras是Python中以CNTK、Tensorflow或者Theano为计算后台的一个深度学习建模环境。...笔者使用的是基于Tensorflow为计算后台。接下来将介绍一些建模过程的常用层、搭建模型和训练过程,而Keras中的文字、序列和图像数据预处理,我们将在相应的实践项目中进行讲解。...一维卷积主要应用于以时间序列数据或文本 数据,二维卷积通常应用于图像数据。由于这三种的使用和参数都基本相同,所以主要以处理图像数据的Conv2D进行说明。...从以上两类模型的简单搭建,都可以发现Keras在搭建模型比起Tensorflow等简单太多了,如Tensorflow需要定义每一层的权重矩阵,输入用占位符等,这些在Keras中都不需要,我们只要在第一层定义输入维度...图 5:优化和训练实现 最后用以下图片总结keras的模块,下一篇文章我们将会使用keras来进行项目实践,从而更好的体会Keras的魅力。 ?

    1.1K60

    使用Keras进行时间序列预测回归问题的LSTM实现

    基本简介 LSTM_learn 使用Keras进行时间序列预测回归问题的LSTM实现 数据 数据来自互联网,这些数据用于预测航空公司的人数,我们使用LSTM网络来解决这个问题 关于此处模型构建...在输出序列中,返回单个 hidden state值还是返回全部time step 的 hidden state值。 False 返回单个, true 返回全部。...例如在设计 encoder-decoder 模型时,我们可能需要对 cell state 的初始值进行设定。...reshaped_data = np.array(data).astype('float64') np.random.shuffle(reshaped_data)#(133,11,1) # 对x进行统一归一化...train_x.shape,test_x.shape)) predict_y, test_y = train_model(train_x, train_y, test_x, test_y) #返回原来的对应的预测数值

    6.7K51

    ·TensorFlow&Keras GPU使用技巧

    [开发技巧]·TensorFlow&Keras GPU使用技巧 ?...1.问题描述 使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误。...首先介绍下TensorFlow&Keras GPU使用的机制:TensorFlow&Keras会在有GPU可以使用时,自动将数据与运算放到GPU进行训练(这个不同于MXNet与PyTorch处理方式不同...3.使用教程 1.解决方法一:使用CPU进行新的任务 这不是最优方法,使用CPU进行新的任务速度会很慢,但是也是一种解决方式 import os os.environ['CUDA_VISIBLE_DEVICES...这样做也会有点小问题就是,单个任务会变慢一点,笔者测试结果是在使用上述方法并行运行两个单个任务速度变为0.8左右,但是换来了可以运行两个任务,还是很值得的。

    1.5K20

    TensorFlow进行简单的图像处理

    TensorFlow进行简单的图像处理 简单概述 作为计算机视觉开发者,使用TensorFlow进行简单的图像处理是基本技能,而TensorFlow在tf.image包中支持对图像的常见的操作包括: 亮度调整...1.放缩图像 支持三种方式,分别是临界点插值、双线性插值与双立方插值,不过我发现在使用双立方插值的时候,tensorflow处理之后图像总是会出现一些噪点,这个算不算它的BUG tf.image.resize_nearest_neighbor...2.图像亮度调整 图像亮度是图像基本属性之一,tensorflow支持两种方式API对图像亮度进行调整 tf.image.adjust_brightness tf.image.random_brightness...使用上述API的时候需要对图像进行维度添加为四维的tensor数据,完整的图像亮度调整的代码如下: src = cv.imread("D:/vcprojects/images/meinv.png")...无需再次进行维度增加操作。最终调整之后的演示图像如下: ? 6.图像标准化 这个在tensorflow中对图像数据训练之前,经常会进行此步操作,它跟归一化是有区别的。

    2K80

    使用TensorFlow和深度混合学习进行时间序列预测

    在本文中,我们将看到深度混合学习如何应用于时间序列数据,以及它是否与图像数据一样有效。 在这篇文章中,我将使用Kaggle的太阳黑子数据。...这里我们使用一维CNN的组合模型提取初始序列特征,然后结合2个LSTM层进行特征提取部分,最后将其传递到传统DNN全连接层,产生最终输出。...同时,由于时间序列预测应该是区间预测而不是单点估计,我们将使用错误率来形成置信区间或置信带。我们可以看到误差带很宽,这意味着模型的置信度不高,可能会有一些预测误差。...,我们使用TensorFlow来形成模型并实现流。...在我使用TensorFlow的深度学习进行后期时间序列预测时,我只使用了一个简单的深度神经网络就得到了更好的结果。

    1.1K20

    Keras模型转TensorFlow格式及使用

    由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow...Keras模型转TensorFlow 其实由于TensorFlow本身以及把Keras作为其高层简化API,且也是建议由浅入深地来研究应用,TensorFlow本身就对Keras的模型格式转化有支持,所以核心的代码很少...模型是一个包含了网络结构和权重的h5文件,那么使用下面的命令就可以了: python keras_to_tensorflow.py --input_model="path/to/keras/model.h5...使用TensorFlow模型 转换后我们当然要使用一下看是否转换成功,其实也就是TensorFlow的常见代码,如果只用过Keras的,可以参考一下: #!...,所以会得到这样一个结果 运行的结果如果和使用Keras模型时一样,那就说明转换成功了!

    1.2K20

    使用LSTM模型预测股价基于Keras

    本期作者:Derrick Mwiti 本期翻译:HUDPinkPig 未经授权,严禁转载 编者按:本文介绍了如何使用LSTM模型进行时间序列预测。...特征归一化 从以前使用深度学习模型的经验来看,我们需要进行数据归一化以获得最佳的测试表现。本文的例子中,我们将使用Scikit- Learn的MinMaxScaler函数将数据集归一到0到1之间。...Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout...1:2].values 为了预测未来的股票价格,我们需要在测试集加载后做如下几个工作: 1、在0轴上合并训练集和测试集 2、将时间步长设置为60(如前面所介绍的) 3、使用MinMaxScaler函数转换新数据集...结论 预测股价的方法还有很多,比如移动平均线、线性回归、k近邻、ARIMA和Prophet。读者可以自行测试这些方法的准确率,并与Keras LSTM的测试结果进行比较。

    4.1K20

    使用 OpenCV 进行图像中的性别预测和年龄检测

    许多企业出于各种原因使用这些技术,包括更轻松地与客户合作、更好地适应他们的需求以及提供良好的体验。人们的性别和年龄使得识别和预测他们的需求变得更加容易。...即使对我们人类来说,从图像中检测性别和年龄也很困难,因为它完全基于外表,有时很难预测,同龄人的外表可能与我们预期的截然不同。 应用 在监控计算机视觉中,经常使用年龄和性别预测。...,我们可以获得边界框的坐标,也可以说人脸在图像中的位置。...包含 TensorFlow 文件。.prototxt 文件提供了年龄和性别的网络配置,而 .caffemodel 文件定义了图层参数的内部状态。...下面的用户定义函数是 pipline 或者我们可以说是主要工作流程的实现,在该工作流程中,图像进入函数以获取位置,并进一步预测年龄范围和性别。

    1.7K20

    指南:使用Keras和TensorFlow探索数据增强

    将扩充后的数据存储在内存中既不实际也不高效,这就是Keras的Image Data Generator类(也包含在TensorFlow的高级API:tensorflow.keras中)发挥作用的地方。...下面是一个辅助脚本,我们将使用它来可视化显示使用Image Data Generator类可以实现的所有功能。...from tensorflow.keras.preprocessing.image import ImageDataGenerator from matplotlib.pyplot import imread...Shear Intensity使图像的形状倾斜。这与旋转不同,因为在Shear Intensity中,我们固定一根轴,将图像按照一定的角度进行拉伸,即Shear Intensity。...我们还可以通过指定rescale参数来对值进行重新缩放,该参数将与所有值相乘。 另外,还有一个参数preprocessing_function,您可以使用该参数指定自己的自定义函数来执行图像处理。

    1.8K31

    图像分类任务中,Tensorflow 与 Keras 到底哪个更厉害?

    通过手动标记图像的类别,你可以下载一个json文件,该文件包含嵌入其中的类的图像的所有详细信息。然后使用下面给出的keras和tensorflow脚本: 训练 现在是时候训练模型了。...Keras Keras是一个基于TensorFlow构建的高级API(也可以在Theano之上使用)。与Tensorflow相比,它更加用户友好且易于使用。...我使用了我在tensorflow部分下载的相同数据集,并按照以下说明进行了一些更改。 它看起来应该如下所示: TRAIN FOLDER 至于,我们现在已完成数据集的设置,是时候进行训练了。...为此,编写了另一个脚本,同时在图像上绘制预测类别并保存它。...您已经学会了如何使用Keras和tensorflow构建强大的分类器。但是,哪一个是最好的仍然是我们头脑中的问题!因此,让我们仅根据此分类任务进行比较研究。

    91820

    使用TensorFlow和DLTK进行生物医学图像分析的介绍

    AiTechYun 编辑:yxy DLTK是用于医学图像的深度学习工具包,它扩展了TensorFlow, 以实现生物医学图像的深度学习。...此外,GPU加速的完整网络的快速推理速度允许我们对空前数量的数据进行尺度分析。 我们可以随时使用深度学习库进行生物医学成像吗?为什么要创建DLTK?...通过损失函数进行类平衡:与经典的三维像素平均损失(例如分类交叉熵,L2等)相比,我们可以a)使用固有平衡的损失函数(例如smooth Dice loss,平均所有类的Dice系数),或b)根据类别频率重新加权每个预测的损失...示例应用 通过本文中提供的基本知识,我们现在可以研究使用TensorFlow构建用于医学图像深度学习的完整应用程序。...这些应用程序之间的主要区别在于损失函数:我们训练回归网络以将年龄预测为具有L2损失的连续变量(预测年龄与实际年龄之间的均方差),我们使用分类交叉熵损失预测性别。

    3.1K40

    使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测

    在本文中,您将发现如何使用Keras深度学习库在Python中开发LSTM网络,以解决时间序列预测问题。 完成本教程后,您将知道如何针对自己的时间序列预测问题实现和开发LSTM网络。...在开始之前,让我们首先导入要使用的所有函数和类。假设安装了Keras深度学习库。 在进行任何操作之前,最好先设置随机数种子,以确保我们的结果可重复。...该网络具有一个具有1个输入的可见层,一个具有4个LSTM块或神经元的隐藏层以及一个进行单个值预测的输出层。默认的Sigmoid激活功能用于LSTM模块。该网络训练了100个时期。...我们可以更好地控制何时在Keras中清除LSTM网络的内部状态。这意味着它可以在整个训练序列中建立状态,甚至在需要进行预测时也可以保持该状态。...概要 在本文中,您发现了如何使用Keras深度学习网络开发LSTM递归神经网络,在Python中进行时间序列预测。 ---- ?

    3.4K10
    领券