和之前学习Pandas一样,我们继续以宝可梦数据集作为学习可视化的例子,进而梳理Python绘图的基本操作,主要涉及seaborn以及matplotlib两个可视化库。
Plotly Express是对 Plotly.py 的高级封装,内置了大量实用、现代的绘图模板,用户只需调用简单的API函数,即可快速生成漂亮的互动图表,可满足90%以上的应用场景。
小提琴图主要用于显示数据分布及其概率密度。中间的黑色粗条表示四分位数范围,从其延伸的幼细黑线代表 95% 置信区间(以外则为异常点),而白点则为中位数。小提琴图结合了箱线图和密度图的优点,既可以了解数据统计信息,也可以了解数据分布特点。
NGS系列文章包括NGS基础、高颜值在线绘图和分析、转录组分析 (Nature重磅综述|关于RNA-seq你想知道的全在这)、ChIP-seq分析 (ChIP-seq基本分析流程)、单细胞测序分析 (重磅综述:三万字长文读懂单细胞RNA测序分析的最佳实践教程)、DNA甲基化分析、重测序分析、GEO数据挖掘(典型医学设计实验GEO数据分析 (step-by-step))、批次效应处理等内容。
Seaborn是一个画图工具 Seaborn是基于Matplotlib的一个Python作图模块 配色更加好看,种类更多,但函数和操作比较简单 1、散点图 散点图可直接观察两个变量的分布情况 1、使用jiontplot()函数画出散点图 import seaborn as sns import pandas as pd import numpy as np iris = pd.read_csv('./data/iris.csv') sns.jointplot(x='sepal_leng
可视化是一种方便的观察数据的方式,可以一目了然地了解数据块。我们经常使用柱状图、直方图、饼图、箱图、热图、散点图、线状图等。这些典型的图对于数据可视化是必不可少的。除了这些被广泛使用的图表外,还有许多很好的却很少被使用的可视化方法,这些图有助于完成我们的工作,下面我们看看有那些图可以进行。
在数据分析统计的场景里,常用的方法除了描述性统计方法外,还有推断统计方法,如果再从工作性质上来划分,推断统计包含了参数估计和假设验证这两方面的内容。而推断统计用到了很多概率统计方法,所以本小节在介绍推断统计的内容前,还将讲述一些常用的概率统计方法。
如你所见,直方图上叠加核密度图,专业来说,核密度估计是用于估计随机变量概率密度函数的一种非参数方法。核密度图是用来观察连续型变量分布的有效方法。绘制密度图的方法:
许多数据的可视化形式都是对称的,例如箱型图、散点图、小提琴图等。由于显示信息的空间有限,可以通过将几何图形切成两半并添加其他几何图形来更好地利用空间。
箱形图 非常有用,因为它们不仅指示中间值,而且还显示了第一四分位数和第三四分位数的测量结果变化。但是,也有一些图提供了一些附加信息。在这里,我们将仔细研究箱形图的潜在替代方案:蜂群图和小提琴图。
数据科学工程的目标是向那些仅对数据内在本质感兴趣的人展示这些数据的含义。要达到这个目标,数据科学家/机器学习工程师要遵循若干个步骤。对于更精确地建立机器学习模型来说,数据预处理(清洗,格式化,缩放,正规化)和多种图表的数据可视化是两个非常重要的步骤。
gghalves可以通过ggplot2轻松地编写自己想要的一半一半(half-half plots)的图片。比如:在散点旁边显示箱线图、在小提琴图旁边显示点图。
它显示了定量数据在一个(或多个)分类变量的多个层次上的分布,这些分布可以进行比较。不像箱形图中所有绘图组件都对应于实际数据点,小提琴绘图以基础分布的核密度估计为特征。
Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。
小提琴形图(violin plot)的作用与盒形图(box plot)和whidker plot的作用类似,它显示了一个或多个分类变量的几个级别的定量数据的分布,我们可以通过观察来比较这些分布。与盒形图不同,因为盒形图的所有绘图组件都对应于实际数据点,小提琴形图具有底层分布的核密度估计。
小提琴图(Violin Plot) 是一种用于展示和比较数据分布的可视化工具。它结合了箱形图(Box Plot)和密度图(Kernel Density Plot)的特点:中间有箱形图表示四分位数和中位数,外围是密度估计曲线,显示数据分布的密度。这种设计旨在提供关于数据分布形状、峰度和离散性的直观信息。
一个精心设计的可视化程序有一些特别之处。颜色突出,层次很好地融合在一起,整个轮廓流动,整个程序不仅有一个很好的美学质量,它也为我们提供了有意义的技术洞察力。
小提琴图(Violin Plot)是一种数据可视化工具,用于展示数据分布的密度和分布情况。它通常用于比较不同组或类别的数据分布。在Python中,我们可以使用seaborn库来轻松绘制小提琴图。本文将详细介绍如何创建小提琴图,并提供示例以帮助您更好地理解。
(1)输入数据 所使用的是经典的iris数据, 包括有sepal_length, sepal_width, petal_length,petal_width和 species五个变量,其中前四个为数字变量,最后一个为分类变量 import seaborn as sns df = sns.load_dataset('iris') df.head() Out[25]: sepal_length sepal_width petal_length petal_width species 0
Seaborn是一个基于Python语言的数据可视化库,它能够创建高度吸引人的可视化图表。
scale 默认count,点的数量决定小提琴图的胖瘦,scale = "width"是让多个小提琴显示同样的最大宽度。
以下部分是基于《Fundamentals of Data Visualization》学习笔记,要是有兴趣的话,可以直接看原版书籍:https://serialmentor.com/dataviz/
在科研工作中,箱线图是一种常用且重要的统计图。在R语言里我们可以针对单一变量绘制箱线图,也可以针对分组后的变量绘制。其中主要的函数是boxplot(x, data=),这里x是一个公式,参数data=则代表提供绘图数据的数据框。常用的公式是y~group,这里group是用来进行分组的变量,y是纵坐标的数据,这样便可以对分组变量绘制出箱线图了。除此之外,如果添加参数varwidth=TRUE,那么箱线图的宽度便会与样本量的平方根成正比。另外参数horizontal=TRUE则可以使横纵坐标颠倒过来。
在数据可视化领域,创建吸引人且具有信息量的统计图表是非常重要的。Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库,它提供了更简单的方式来创建各种统计图表,并且具有更好的美观度和默认设置。本文将介绍如何使用 Seaborn 库创建吸引人的统计图表,并提供代码实例来帮助读者更好地理解。
本文介绍基于Python中matplotlib模块与seaborn模块,利用多个列表中的数据,绘制小提琴图(Violin Plot)的方法。
本篇教程,内容十分丰富,虽然是单篇,大家务必多多练习,可以充当一周的学习内容,静下心来慢慢吸收。
数据可视化是数据分析与数据科学工作中的重要组成部分,而Matplotlib与Seaborn作为Python最常用的绘图库,其掌握程度直接影响到面试表现。本篇博客将深入浅出地探讨Python面试中与Matplotlib、Seaborn相关的常见问题、易错点,以及如何避免这些问题,同时附上代码示例以供参考。
1.简介 Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。 ---- 2.绘图基础 2.1 图表基本元素 图例和标题 x轴和y轴、刻度、刻度标签 绘图区域及边框 网格线 2.2 图表基本属性 多重绘图属性: 是否在同一个图上绘制多个系列的线 多重子图属性: 是否生成多个子图,并在每个子图上绘制多个系列的线 ---- 3.绘图方式 3.1 Pyplot API[1] 3.1.1 属性设置函数 绘制图边框: box 为图表添加图例: fi
课前准备,R语言的安装和配置都OK了吗?生物信息系列课程-R语言入门;挖掘GEO速成SCI文章系列教程(3)-R语言基础。小板凳排排坐,飞飞老师要开课~
该函数类似于stripplot(),但该函数可以对点进行一些调整,使得数据点不重叠。
这种图表使用同心圆网格来绘制条形图。每个圆圈表示一个数值刻度,而径向分隔线则用作区分不同类别或间隔(如果是直方图)。
see包是一个R语言可视化工具包,它能为使用者提供漂亮的、出版级的图像展示。 本文中主要介绍see包使用的主要函数:
我们平时说的小提琴图其实是箱式图与核密度图的结合,箱式图展示了分位数的位置,小提琴图则展示了任意位置的密度,小提琴图可以展示密度较高的位置。下面我们一起来看看几种绘图R包。
第一步:准备数据,使用的数据包括三列,len长度,supp是分类变量,dose是0.5mg,1mg和2mg三个变量。
前面分别介绍过了单细胞常见的可视化方式DimPlot,FeaturePlot ,DotPlot ,VlnPlot 和 DoHeatmap的优化方式
大家在处理数据时经常会遇到非正态分布数据,很多人就不知道该用哪种图来呈现数据了。此时可以考虑使用四分位图,而今天要聊的小提琴图可看成是四分位图plus版。
真依然很拉风,简书《数据可视化》专栏维护者,里面有很多优秀的文章,本文便是其中一篇。
许多年之后,面对同一个作图需求,僵小鱼将会回想起,在微信群里提出相同问题的那个遥远的上午
最近小仙同学在好几篇文献里看到了这种小提琴图,暂时就肤浅地认为这是作者为了更好地比较对照组与实验组的差别,所以将同一个基因的小提琴图各画了一半,放在一起。为了跟上可视化的潮流,小仙也来尝试画一下这个没查到正经名字的图。
数据可视化的文章我很久之前就打算写了,因为最近用Python做项目比较多,于是就花时间读了seaborn的文档,写下了这篇。 数据可视化在数据挖掘中是一个很重要的部分,将数据用图表形式展示可以很直观地看到数据集的特点(比如正态分布,长尾分布,聚集等),方便下一步怎么对数据进行处理。
今天小编给大家介绍第二种方法,绘制散点图,并且在散点图上添加直方图和密度曲线。我们还是使用☞【R绘图】散点图+直方图(密度图)里面使用的数据。这次我们使用的R包叫ggExtra
【小提琴图】其实是【箱线图】与【核密度图】的结合,【箱线图】展示了分位数的位置,【小提琴图】则展示了任意位置的密度,通过【小提琴图】可以知道哪些位置的密度较高。 小提琴图的内部是箱线图(有的图中位数会用白点表示,但归根结底都是箱线图的变化);外部包裹的就是核密度图,某区域图形面积越大,某个值附近分布的概率越大。 通过箱线图,可以查看有关数据的基本分布信息,例如中位数,平均值,四分位数,以及最大值和最小值,但不会显示数据在整个范围内的分布。如果数据的分布有多个峰值(也就是数据分布极其不均匀),那么箱线图就无法展现这一信息,这时候小提琴图的优势就展现出来了!
如果曾经在Python中使用过线图,条形图等图形,那么一定已经遇到了名为matplotlib的库。
可视化是以图形形式表示数据或信息的过程。在本文中,将介绍Seaborn的最常用15个可视化图表
内容来源:和鲸社区 有效图表的重要特征: 在不歪曲事实的情况下传达正确和必要的信息。 设计简单,您不必太费力就能理解它。 从审美角度支持信息而不是掩盖信息。 信息没有超负荷。 01 关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系。也就是说,一个变量如何相对于另一个变化。 1、散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和基本的图表。如果数据中有多个组,则可能需要以不同颜色可视化每个组。在 matplotlib 中,您可以使用 plt.scatte
本文总结了在数据分析和可视化中最有用的 50 个 Matplotlib 图表。这些图表列表允许您使用 python 的 matplotlib 和 seaborn 库选择要显示的可视化对象。
相信大家对小提琴图并不陌生,它是比箱形图更易于视觉直观解读的图形绘制方法。它使用数据的核密度估计值代替了箱形图,并可选择叠加数据点本身。小提琴图是箱形图的升级加强版,对数据分布有更丰富的理解,同时不必占用更多空间。在小提琴图中,可以轻松发现过于稀疏的数据或多模式分布,而这些在箱形图中可能不会被注意到。本文推荐一款由Bastian Bechtold开发的小提琴图绘制工具箱 —— Violinplots。
我们使用r语言中ggplot2包绘制云雨图,云雨图可以看做是核密度估计曲线图、箱线图和抖动散点图的组合图表。我们可以使用自定义的半小提琴函数geom_flat_volin()、箱型图函数geom_boxplot和抖动散点图函数geom_jitter()叠加实现。
这里我画的确实不咋美观呢【此外,似乎原文的marker不是按照top基因来选的?】
领取专属 10元无门槛券
手把手带您无忧上云