首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...日期功能 本节将提到“日期”,但时间戳的处理方式类似。 我们可以将日期功能分为两部分:解析和输出。在Excel电子表格中,日期值通常会自动解析,但如果您需要,还有一个 DATEVALUE 函数。...在 Pandas 中,您需要在从 CSV 读取时或在 DataFrame 中读取一次时,将纯文本显式转换为日期时间对象。 解析后,Excel电子表格以默认格式显示日期,但格式可以更改。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...按位置提取子串 电子表格有一个 MID 公式,用于从给定位置提取子字符串。获取第一个字符: =MID(A2,1,1) 使用 Pandas,您可以使用 [] 表示法按位置位置从字符串中提取子字符串。

19.6K20

生物信息中的Python 05 | 从 Genbank 文件中提取 CDS 等其他特征序列

而NCBI 的基因库中已经包含有这些的信息,但是只有一部分是整理可下载的。而剩下的一部分可以通过 genbank给出的位点信息来提取,个人能力有限,这里只做抛转之用。...下面以提取 CDS 为例,记录提取序列过程,其他特征序列类似。 2 结构目录 ?...format_seq += "\n" return ana + format_seq + "\n" def get_cds(gb_file, f_cds): """ 从...: fasta 格式的 CDS 序列, fasta 格式的完整序列 """ # 提取完整序列并格式为 fasta gb_seq = SeqIO.read(gb_file, "genbank...会有详细信息展示,点击 fasta 链接来下载序列 ? 4.2 对于NC,NM,可以用下面的方式来实现 CDS 序列下载,同样对于样本量大的序列分析比较低效 ?

4.9K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    10快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如 df.query("Quantity != 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...()需要使用DT提取器,DT是一种访问对象,用于提取日期时间,例如DateTime系列的属性。

    4.5K10

    10个快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...()需要使用DT提取器,DT是一种访问对象,用于提取日期时间,例如DateTime系列的属性。

    4.4K20

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...,所以我们需要先进行转换: df["OrderDate"] = pd.to_datetime(df["OrderDate"], format="%Y-%m-%d") 为了提取有关日期的有用信息并在query...()需要使用dt提取器,dt是一种访问对象,用于提取日期时间,例如DateTime系列的属性。

    3.9K20

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...,所以我们需要先进行转换: df["OrderDate"] = pd.to_datetime(df["OrderDate"], format="%Y-%m-%d") 为了提取有关日期的有用信息并在query...()需要使用dt提取器,dt是一种访问对象,用于提取日期时间,例如DateTime系列的属性。

    24120

    地理空间数据的时间序列分析

    较亮的像素具有较高的降雨值。在下一节中,我将提取这些值并将它们转换为pandas数据框。 从光栅文件中提取数据 现在进入关键步骤——提取每个366个光栅图像的像素值。...这个过程很简单:我们将循环遍历每个图像,读取像素值并将它们存储在一个列表中。 我们将另外在另一个列表中跟踪日期信息。我们从哪里获取日期信息?...转换为时间序列数据框 在pandas中,将列表转换为数据框格式是一项简单的任务: # convert lists to a dataframe df = pd.DataFrame(zip(date, rainfall_mm...), columns = ['date', 'rainfall_mm']) df.head() 现在我们有了一个pandas数据框,但请注意,“日期”列中的值是字符串,pandas尚不知道它代表日期...最后 从地理空间时间序列数据中提取有趣且可操作的见解可以非常强大,因为它同时展示了数据的空间和时间维度。然而,对于没有地理空间信息培训的数据科学家来说,这可能是一项令人望而却步的任务。

    24710

    爬虫入门经典(二十四) | 爬取当当网图书信息并进行数据清洗

    图书数据存储 我们已经成功从网页中提取出了图书的信息,并且转换成了 DataFrame 格式。可以选择将这些图书信息保存为 CSV 文件,Excel 文件,也可以保存在数据库中。...3)对于评论数这一列直接提取数值。 4)出版信息分为三列分别是作者、出版日期、出版社。 5)将原始数据中的书名拆分为为书名和简介两列。...4.5 获取出版信息 接下来我们处理出版信息这一列,从原始数据中可以看到,这一列主要包含三个信息,分别是作者、出版日期、出版社。...它们以/分隔,并且存放在一个数据单元中,因此我们将它们分别取出,然后单独存为三列。 1. 提取作者 从原始数据中可以看出以/分隔的第一个数据是作者,因此我们可以直接提取。...新增 出版日期 列,并借助 pd.to_datetime 方法将字符串格式的时间转换成时间格式。

    4.5K20

    pandas时间序列常用方法简介

    pd.Timestamp(),时间戳对象,从其首字母大写的命名方式可以看出这是pandas中的一个类,实际上相当于Python标准库中的datetime的定位,在创建时间对象时可接受日期字符串、时间戳数值或分别指定年月日时分秒等参数三类...(str):时间提取字符串 其中,pd.to_datetime可接受单个或多个日期数值,具体类型包括数值型、字符串、数组或pd.series等序列,其中字符串日期格式几乎包含了所有可能的组成形式,例如...需要指出,时间序列在pandas.dataframe数据结构中,当该时间序列是索引时,则可直接调用相应的属性;若该时间序列是dataframe中的一列时,则需先调用dt属性再调用接口。...举例如下: 1.首先创建数据结构如下,其中初始dataframe索引是时间序列,两列数据分别为数值型和字符串型 ? 2.运用to_datetime将B列字符串格式转换为时间序列 ?...3.分别访问索引序列中的时间和B列中的日期,并输出字符串格式 ? 03 筛选 处理时间序列的另一个常用需求是筛选指定范围的数据,例如选取特定时段、特定日期等。

    5.8K10

    玩转数据处理120题|R语言版本

    #openxlsx::read.xlsx中的detectDates参数只能识别纯日期 #as.Data转换该列后时间数据丢失,只有日期 #故先把excel文件转存为csv后用readr包读取 # 该方法不理想...R解法 #转化后该列属性是 字符串,R中对时间格式要求严格 df$createTime % str_replace('2020-','') 26...R解法 colSums(is.na(df)) 54 缺失值处理 题目:提取日期列含有空值的行 难度:⭐⭐ 期望结果 ?...names(df) <- c('col1','col2','col3') 89 数据提取 题目:提取第一列中不在第二列出现的数字 难度:⭐⭐⭐ R语言解法 df[!...:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据1中的前10行中读取positionName, salary两列 R语言解法 #一步读取文件的指定列用readr包或者原生函数都没办法 #如果文件特别大又不想全部再选指定列可以用如下办法

    8.9K10

    Pandas进阶修炼120题|完整版

    从读取数据到高级操作全部包含,希望可以通过刷题的方式来完整学习pandas中数据处理的各种方法,当然如果你是高手,也欢迎尝试给出与答案不同的解法。...答案: df = pd.DataFrame(data) 本期所有题目均基于该数据框给出 2 数据提取 题目:提取含有字符串"Python"的行 难度:⭐⭐ 期望结果 grammer score...,min函数,因为我们的数据中是20k-35k这种字符串,所以需要先用正则表达式提取数字 import re for i in range(len(df)): str1 = df.ix[i,2]...答案 data.isnull().sum() 54 缺失值处理 题目:提取日期列含有空值的行 难度:⭐⭐ 期望结果 ?...题目:提取第一列中不在第二列出现的数字 难度:⭐⭐⭐ 答案 df['col1'][~df['col1'].isin(df['col2'])] 90 数据提取 题目:提取第一列和第二列出现频率最高的三个数字

    12.7K106

    PySpark SQL——SQL和pd.DataFrame的结合体

    :这是PySpark SQL之所以能够实现SQL中的大部分功能的重要原因之一,functions子类提供了几乎SQL中所有的函数,包括数值计算、聚合统计、字符串以及时间函数等4大类,后续将专门予以介绍...select:查看和切片 这是DataFrame中最为常用的功能之一,用法与SQL中的select关键字类似,可用于提取其中一列或多列,也可经过简单变换后提取。...,以及对单列进行简单的运算和变换,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过df.age+1构造了名字为(age+1)的新列...,包括子字符串提取substring、字符串拼接concat、concat_ws、split、strim、lpad等 时间处理类,主要是对timestamp类型数据进行处理,包括year、month、hour...提取相应数值,timestamp转换为时间戳、date_format格式化日期、datediff求日期差等 这些函数数量较多,且与SQL中相应函数用法和语法几乎一致,无需全部记忆,仅在需要时查找使用即可

    10K20

    强烈推荐Pandas常用操作知识大全!

    df.isnull().sum() # 提取某列含有空值的行 df[df['日期'].isnull()] # 输出每列缺失值具体行数 for i in df.columns: if df[...["变压器编号"]=='JJ2YYA'] # 提取第一列中不在第二列出现的数字 df['col1'][~df['col1'].isin(df['col2'])] # 查找两列值相等的行号 np.where..., connection_object) # 从SQL表/数据库中读取 pd.read_json(json_string) # 从JSON格式的字符串,URL或文件中读取。...pd.DataFrame(dict) # 从字典中,列名称的键,列表中的数据的值 导出数据 df.to_csv(filename) # 写入CSV文件 df.to_excel(filename)...返回均值的所有列 df.corr() # 返回DataFrame中各列之间的相关性 df.count() # 返回非空值的每个数据帧列中的数字 df.max()

    15.9K20

    玩转数据处理120题|Pandas版本

    题目:提取含有字符串"Python"的行 难度:⭐⭐ 期望结果 grammer score 0 Python 1.0 7 Python 10.0 Python解法: #> 1 df[df...Python解法 df.isnull().sum() 54 缺失值处理 题目:提取日期列含有空值的行 难度:⭐⭐ 期望结果 ?...题目:提取第一列中不在第二列出现的数字 难度:⭐⭐⭐ Python解法 df['col1'][~df['col1'].isin(df['col2'])] 90 数据提取 题目:提取第一列和第二列出现频率最高的三个数字...难度:⭐⭐⭐ Python解法 temp = df['col1'].append(df['col2']) temp.value_counts()[:3] 91 数据提取 题目:提取第一列中可以整除5的数字位置...101 数据读取 题目:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据1中的前10行中读取positionName, salary两列 Python解法 df1 = pd.read_csv(r'C

    7.6K41

    Pandas中的数据转换

    (data=data, index=index) # 将出生日期转为时间戳 user_info["birth"] = pd.to_datetime(user_info.birth) user_info...user_info.city.str.split(" ", expand=True) 提取子串 既然是在操作字符串,很自然,你可能会想到是否可以从一个长的字符串中提取出子串。答案是可以的。...方法 描述 cat() 连接字符串 split() 在分隔符上分割字符串 rsplit() 从字符串末尾开始分隔字符串 get() 索引到每个元素(检索第i个元素) join() 使用分隔符在系列的每个元素中加入字符串...大家如果感觉可以的话,可以去做一些小练习~~ 【练习一】 现有一份关于字符串的数据集,请解决以下问题: (a)现对字符串编码存储人员信息(在编号后添加ID列),使用如下格式:“×××(名字):×国人...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。

    13510

    玩转数据处理120题|Pandas&R

    #openxlsx::read.xlsx中的detectDates参数只能识别纯日期 #as.Data转换该列后时间数据丢失,只有日期 #故先把excel文件转存为csv后用readr包读取 # 该方法不理想...字符串,R中对时间格式要求严格 df$createTime % str_replace('2020-','') 26 数据查看 题目:查看索引...Python解法 df.isnull().sum() R解法 colSums(is.na(df)) 54 缺失值处理 题目:提取日期列含有空值的行 难度:⭐⭐ 期望结果 ?...names(df) <- c('col1','col2','col3') 89 数据提取 题目:提取第一列中不在第二列出现的数字 难度:⭐⭐⭐ Python解法 df['col1'][~df['col1...dist(rbind(df$col1,df$col2)) # 1 # 2 197.0102 101 数据读取 题目:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据1中的前10行中读取positionName

    6.1K41

    基础教程:用Python提取出租车GPS数据中的OD行程信息

    我们的目标是从原始的出租车定位数据中提取出每个行程的起始和结束时间、地点以及行程距离等信息。...具体操作如下: (1)将时间戳转换为时间格式 # 定义一个年月日字符串 由数据源官网可知数据所在日期是2013-10-22 default_date_str = '2013-10-22 ' # 将时间转换为字符串...# 创建一个新的 DataFrame,用于存储提取出的行程信息。...列包括车辆编号、行程开始和结束时间、起点和终点的经纬度。...= trips['EndLat'])] len(trips) 4、数据存储 提取出的行程信息包括车辆编号、行程的开始和结束时间、起始和结束位置的经纬度等,这些信息被存储在一个新的DataFrame中。

    77511
    领券