首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从原子和键列表绘制分子的2D和/或3D图

绘制分子的2D和3D图可以使用多种工具和库。以下是一些常用的方法和库,帮助你从原子和键列表绘制分子的2D和3D图。

使用 RDKit 绘制 2D 分子图

RDKit 是一个用于化学信息学的开源工具包,支持分子的2D绘制。你可以使用 RDKit 从原子和键列表生成分子对象,并绘制其2D图。

安装 RDKit

首先,确保你已经安装了 RDKit。你可以使用 conda 安装:

代码语言:javascript
复制
conda install -c conda-forge rdkit

使用 RDKit 绘制 2D 分子图

以下是一个示例代码,展示如何使用 RDKit 绘制2D分子图:

代码语言:javascript
复制
from rdkit import Chem
from rdkit.Chem import Draw

# 创建分子对象
mol = Chem.MolFromSmiles('CCO')  # 例如,乙醇

# 绘制2D分子图
img = Draw.MolToImage(mol)
img.show()

使用 Py3Dmol 绘制 3D 分子图

Py3Dmol 是一个用于3D分子可视化的Python库。你可以使用 Py3Dmol 从原子和键列表生成分子对象,并绘制其3D图。

安装 Py3Dmol

你可以使用 pip 安装 Py3Dmol:

代码语言:javascript
复制
pip install py3Dmol

使用 Py3Dmol 绘制 3D 分子图

以下是一个示例代码,展示如何使用 Py3Dmol 绘制3D分子图:

代码语言:javascript
复制
import py3Dmol

# 创建3D分子对象
view = py3Dmol.view(query='molecule:CCO')  # 例如,乙醇
view.setStyle({'stick': {}})
view.show()

使用 Open Babel 绘制 2D 和 3D 分子图

Open Babel 是一个用于化学信息学的开源工具包,支持分子的2D和3D绘制。你可以使用 Open Babel 从原子和键列表生成分子对象,并绘制其2D和3D图。

安装 Open Babel

你可以使用 conda 安装 Open Babel:

代码语言:javascript
复制
conda install -c conda-forge openbabel

使用 Open Babel 绘制 2D 和 3D 分子图

以下是一个示例代码,展示如何使用 Open Babel 绘制2D和3D分子图:

代码语言:javascript
复制
import openbabel

# 创建分子对象
obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("smi", "mol")
mol = openbabel.OBMol()
obConversion.ReadString(mol, "CCO")  # 例如,乙醇

# 绘制2D分子图
obConversion.SetOutFormat("svg")
svg = obConversion.WriteString(mol)
with open("molecule_2d.svg", "w") as f:
    f.write(svg)

# 绘制3D分子图
obConversion.SetOutFormat("xyz")
xyz = obConversion.WriteString(mol)
with open("molecule_3d.xyz", "w") as f:
    f.write(xyz)

使用 JSmol 绘制 3D 分子图

JSmol 是一个用于3D分子可视化的JavaScript库。你可以使用 JSmol 在网页中嵌入3D分子图。

使用 JSmol 绘制 3D 分子图

以下是一个示例代码,展示如何使用 JSmol 绘制3D分子图:

代码语言:javascript
复制
<!DOCTYPE html>
<html>
<head>
    <script type="text/javascript" src="https://chemapps.stolaf.edu/jmol/jsmol/JSmol.min.js"></script>
</head>
<body>
    <script type="text/javascript">
        var Info = {
            width: 500,
            height: 500,
            use: "HTML5",
            j2sPath: "https://chemapps.stolaf.edu/jmol/jsmol/j2s",
            script: "load data/mol/ethanol.mol; wireframe only; spacefill 20%;",
            debug: false
        };
        Jmol.getApplet("jmolApplet0", Info);
    </script>
    <div id="jmolApplet0" style="width: 500px; height: 500px;"></div>
</body>
</html>
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • NeurIPS 2021|分子的三维构象集的扭转几何生成

    今天给大家介绍的是NeurIPS 2021上一篇来自MIT的论文。在化学信息学和药物发现领域中,从分子图中预测分子的三维构象集具有关键的作用,但现有的生成模型存在严重的问题,这包括缺乏对重要分子几何元素的建模,优化阶段容易出现累积误差,需要基于经典力场或计算代价昂贵的方法进行结构微调。作者团队提出GEOMOL模型,一种端到端、非自回归和SE(3)不变的机器学习方法来生成低能分子三维构象的分布。利用消息传递神经网络(MPNN)捕捉局部和全局信息的能力,我们能预测局部原子的3D结构和扭转角,这样的局部预测即可用于计算训练损失,也可用于测试时的完整构象。作者团队设计了一个非对抗性的基于损失函数的最优传输来促进多样的构象生成。GEOMOL优于流行的开源、商业或最先进的ML模型,同时速度得到了显著提升。我们希望这种可微的三维结构生成器能对分子建模和相关应用产生重大影响。

    02

    NeurIPS 2021 | 通过动态图评分匹配预测分子构象

    从 2D 分子图中预测稳定的 3D 构象一直是计算化学中的一个长期挑战。而最近,机器学习方法取得了相比传统的实验和基于物理的模拟方法更优异的成绩。这些方法主要侧重于模拟分子图上相邻原子之间的局部相互作用,而忽略了非键合原子之间的长程相互作用。然而,这些未成键的原子在 3D 空间中可能彼此接近,模拟它们的相互作用对于准确确定分子构象至关重要,尤其是对于大分子和多分子复合物。在本文中,作者提出了一种称为动态图评分匹配 (DGSM) 的分子构象预测新方法,该方法通过在训练和推理过程中根据原子之间的空间接近度动态构建原子之间的图结构来对局部和远程相互作用进行建模。具体来说,DGSM根据动态构建的图,使用评分匹配方法直接估计原子坐标对数密度的梯度场。可以以端到端的方式有效地训练整个框架。多项实验表明,DGSM 的表现远超该领域一流水平,并且能够为更广泛的化学系统生成构象,例如蛋白质和多分子复合物。

    02

    Chemical Science | SDEGen:基于随机微分方程的构象生成模型

    本文介绍一篇来自浙江大学侯廷军教授、康玉副教授和碳硅智慧联合发表在Chemical Science的论文《SDEGen: Learning to Evolve Molecular Conformations from Thermodynamic Noise for Conformation Generation》。该论文提出了一种将分子力学当中的随机动力学系统和深度学习当中的概率模型相结合的小分子三维构象生成模型:SDEGen。作者采用随机微分方程(Stochastic Differential Equation, SDE)模拟分子构象从热噪声分布到热平衡分布的过程,联合概率深度学习的最新DDIM(Denoising Diffusion Implicit Models)模型,不仅提高了模型生成构象的效率,并且在多项评测任务(包括构象生成质量、原子间距离分布和构象簇的热力学性质)上实现了精度的提升。如在构象生成质量上,其多样性指标优于传统方法22%,准确性指标优于传统方法40%;在热力学性质预测方面,将传统方法的精度提升了一个数量级,与量化计算的结果误差缩小至~2kJ/mol。除此之外,这篇文章还引入了晶体构象的比对实验和势能面分布实验,为构象生成任务的评测提供了更多维及更物理的视角。大量的实验表明,SDEGen不仅可以搜索到小分子晶体构象所在的势能面的势阱当中,还可以搜索到完整势能面上多个局域优势构象。同时,SDEGen模型计算效率极高,在分子对接、药效团识别、定量构效关系等药物设计任务中具有广泛的应用前景。

    03

    MolFlow: 高效3D分子生成方法

    今天为大家介绍的是来自查尔姆斯理工大学的Simon Olsson团队的一篇论文。最近,3D药物设计的生成模型因其在蛋白质口袋中直接设计配体的潜力而获得了广泛关注。然而,目前的方法通常存在采样时间非常慢或生成分子的化学有效性差的问题。为了解决这些限制,作者提出了Semla,一个可扩展的E(3)-等变消息传递架构。作者进一步介绍了一个分子生成模型MolFlow,该模型使用流匹配和尺度最优传输进行训练,这是等变最优传输的一种新扩展。作者的模型在基准数据集上仅需100个采样步骤就能产生最先进的结果。关键是,MolFlow在不牺牲性能下只需20个步骤就能采样出高质量分子,相比于现有技术实现了两个数量级的速度提升。最后,作者比较了MolFlow与当前方法在生成高质量样本方面的能力,进一步展示了其强大性能。

    01

    arXiv|使用深度生成模型在3D空间上生成类药分子

    今天给大家介绍的是北京大学来鲁华课题组在arXiv上挂出的预印论文《Learning to design drug-like molecules in three-dimensional space using deep generative models》。近年来,分子图的深度生成模型在药物设计领域受到了越来越多的关注。目前已经开发了多种模型来生成拓扑结构,但在产生三维结构方面的探索仍然有限。现有的方法要么关注于低分子量化合物而不考虑药物相似性,要么利用原子密度图来间接生成三维结构。在这项工作中,作者介绍了配体神经网络(L-Net),一种新的图生成模型,用于设计具有高质量三维结构的类药分子。L-Net直接输出分子(包括氢原子)的拓扑和三维结构,而不需要额外的原子放置或键序推理算法。实验结果表明,L-Net能够产生化学正确、构象有效的类药分子。最后,为了证明其在基于结构的分子设计中的潜力,作者将L-Net与MCTS结合,并测试其产生靶向ABL1激酶的潜在抑制剂的能力。

    02

    ACM 杰出会员姬水旺:量子化学和物理的深度学习

    整理丨汪浩文 校对丨维克多 量子技术和人工智能都是当前最先进的科学技术,前者被寄希望于拥有超强的计算能力,后者已经在各行各业“大杀四方”。当两者相遇会碰撞出什么样的火花?人工智能又能在哪些方面助力量子技术? 去年12月份,德州农工大学计算机科学与工程系(校长有影响力)教授姬水旺在CNCC大会上发表了《量子化学和物理的深度学习》的演讲,表达了他对两个学科的感想。 “量子打破了我们很多常识性的理解,在量子状态世界的运行并不确定,我们最多只能预测各种结果出现的概率。” 此外,他还表示,量子的研究对象虽然是原子层

    08

    ICML 2024 | MolCRAFT:连续参数空间中基于结构的药物设计

    今天为大家介绍的是来自清华大学的周浩团队的一篇论文。近年来,用于基于结构的药物设计(SBDD)的生成模型显示出令人鼓舞的结果。现有的工作主要集中在如何生成具有更高结合亲和力的分子,忽略了生成的3D构象的可行性前提,从而导致假阳性。作者对在SBDD中应用自回归方法和扩散方法时出现的不良构象问题的关键因素进行了深入研究,包括模式崩溃和混合连续离散空间。在本文中,作者介绍了MolCRAFT,这是第一个在连续参数空间中运行的SBDD模型,并结合了一种新颖的降噪采样策略。实证结果表明,作者的模型在结合亲和力和更稳定的3D结构方面始终表现优异,证明了模型准确建模原子间相互作用的能力。据作者所知,MolCRAFT是第一个在相似分子尺寸下实现参考级Vina评分(-6.59 kcal/mol)的模型,较其他强基线模型大幅领先(-0.84 kcal/mol)。代码可在以下网址获得:https://github.com/AlgoMole/MolCRAFT。

    01

    ICLR 2022 | 三维分子图的球形信息传递

    今天给大家介绍的是ICLR 2022 Poster的文章《Spherical Message Passing for 3D Molecular Graphs》。作者在此工作中考虑了三维分子图的表示学习,其中每个原子与三维的空间位置相关联。这是一个尚未得到充分探索的研究领域,目前还缺乏一个有效的信息传递框架。在这项工作中,作者在球坐标系(SCS)中进行了分析,以完整地识别三维图结构。基于此观察,作者提出了球形信息传递(SMP)作为一种新的和强大的三维分子学习方案。SMP显著降低了训练的复杂性,使其能够在大规模分子上有效地执行。此外,SMP能够区分几乎所有的分子结构,而未覆盖的案例在实际中可能并不存在。基于有意义的基于物理的三维信息表示,作者进一步提出了用于三维分子学习的SphereNet。实验结果表明,在SphereNet中使用有意义的三维信息可以显著提高预测任务的性能。结果还证明了SpherNet在可靠性、效率方面的优势。

    01

    Nat. Mach. Intell. | 使用多尺度深度生成模型进行特定状态的蛋白质-配体复合体结构预测

    今天为大家介绍的是来自Animashree Anandkumar团队的一篇论文。由蛋白和小分子构成的结合复合物是普遍存在的,对生命至关重要。尽管近年来蛋白质结构预测技术有了显著进展,现有算法仍未能系统地预测配体结构及其对蛋白质折叠的调控效应。为了解决这一差异,作者提出了一种名为NeuralPLexer的计算方法,能够仅通过蛋白质序列和配体分子图直接预测蛋白质-配体复合物结构。NeuralPLexer采用深度生成模型,按原子分辨率抽样结合复合物的三维结构及其构象变化。该生成模型基于扩散过程,整合了基本的生物物理限制和多尺度几何深度学习系统,以层次化方式迭代抽样残基级接触图和所有重原子坐标。与所有现有方法相比,NeuralPLexer在蛋白质-配体盲对接(blind protein-ligand docking)和柔性结合位点结构复原(flexible binding-site structure recovery)的基准测试上实现了最先进的性能。此外,由于其在采样配体自由态和配体结合态集合方面的特异性,NeuralPLexer在全局蛋白质结构预测准确性上一致超过AlphaFold2,无论是在具有大构象变化的代表性结构对还是在最近确定的配体结合蛋白上。NeuralPLexer的预测与酶工程和药物发现中重要靶标的结构测定实验相一致,显示出其在加速设计功能性蛋白质和小分子药物的潜力,有望在蛋白组学规模上实现。

    01

    J. Chem. Inf. Model. | 增强指纹图注意力网络(FinGAT)模型用于抗生素发现

    今天为大家介绍的是来自JunJie Wee和Kelin Xia团队的一篇关于抗生素发现的论文。人工智能(AI)技术在改变抗生素发现行业方面具有巨大潜力。高效和有效的分子特征化是实现高准确性学习用于抗生素发现的模型的关键。作者提出了一种通过结合基于序列的2D指纹和基于结构的图表示的指纹增强的图注意力网络(FinGAT)模型。在特征学习过程中,序列信息转化为指纹向量,结构信息通过GAT模块编码为另一个向量。这两个向量被连接并输入到多层感知机(MLP)进行抗生素活性分类。模型经过广泛的测试并与现有模型进行比较。研究发现, FinGAT在抗生素发现中可以胜过各种最先进的GNN模型。

    01

    Brief. Bioinform. | 从直觉到人工智能:药物发现中的小分子表征演变

    今天介绍一篇2023年11月发表在《Briefings in Bioinformatics》期刊上的论文,题为“From Intuition to AI: Evolution of Small Molecule Representations in Drug Discovery”,文章的第一作者为英国爱丁堡大学的Miles McGibbon研究员和 Steven Shave研究员,以及中南大学的董界副教授,通讯作者为爱丁堡大学的Vincent Blay博士。该综述总结了药物发现领域中分子表示(表征)的演变历程,从最初的人类可读格式,逐步发展到现代的数字描述符、指纹,以及基于序列和图的学习表示。作者强调了各种表示方法在通用性、计算成本、不可逆性和可解释性等方面的优缺点。文章还讨论了药物发现领域的创新机会,包括为高价值、低数据制度创建分子表示,提炼更广泛的生物和化学知识成为新颖的学习表示,以及对新兴治疗方式进行建模。总体而言,文章聚焦于数字化分子表示在药物研发中的关键作用,同时探讨了所面临的挑战和机遇。

    01

    Nat. Commun. | 相互作用引导药物设计的三维分子生成框架

    今天为大家介绍的是来自韩国科学技术院的一篇利用相互作用引导进行3D 分子生成的论文。深度生成模型具有加速药物设计的强大潜力。然而,由于数据有限,现有的生成模型常常面临泛化方面的挑战,导致设计创新性较差,并且与看不见的目标蛋白之间往往存在不利的相互作用。为了解决这些问题,作者提出了一种相互作用感知的 3D 分子生成框架,该框架能够在目标结合口袋内进行相互作用引导的药物设计。通过利用蛋白质-配体相互作用的通用模式作为先验知识,作者的模型可以利用有限的实验数据实现高度的通用性。通过分析生成的未见靶标配体的结合姿势稳定性、亲和力、几何图案、多样性和新颖性,对其性能进行了全面评估。此外,潜在突变选择性抑制剂的有效设计证明了提出的方法对基于结构的药物设计的适用性。

    01

    ICML 2024 | 基于体素网格的药物设计

    今天为大家介绍的是来自Prescient Design, Genentech团队的一篇论文。作者提出了VoxBind,这是一种基于评分的3D分子生成模型,该模型以蛋白质结构为条件。作者的方法将分子表示为3D原子密度网格,并利用3D体素去噪网络进行学习和生成。作者将神经经验贝叶斯的形式扩展到条件设置,并通过两步程序生成基于结构的分子:(i) 使用学习到的评分函数,通过欠阻尼的Langevin MCMC从高斯平滑的条件分布中采样噪声分子,(ii) 通过单步去噪从噪声样本中估计出干净的分子。与当前的最先进技术相比,作者的模型更易于训练,采样速度显著更快,并且在大量的计算基准测试中取得了更好的结果——生成的分子更加多样化,表现出更少的空间碰撞,并且与蛋白质口袋结合的亲和力更高。

    01

    ICML2022 | EQUIBIND:用于药物结合结构预测的几何深度学习方法

    本文介绍一篇来自于麻省理工学院的Hannes Stärk、Octavian Ganea等人发表在ICML上的分子结构预测工作——《EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction》。预测类药物分子如何和特定靶蛋白结合是药物发现中的一个核心问题。已有方法依赖于评分、排序和微调等步骤对大量候选分子进行采样,计算非常昂贵。针对该问题,作者提出一种SE(3)等变的几何深度学习模型——EQUIBIND。该模型能直接快速地预测出受体结合位置以及配体的结合姿势和朝向。此外,作者将该模型同已有的微调技巧结合取得额外突破。最后,作者提出一种新型且快速的微调模型,它对于给定的输入原子点云基于冯·米塞斯角距离全局最小值的近似形式来调整配体可旋转键的扭转角,避免以前昂贵的差分进化能源最小化策略。

    02
    领券