本文是《人脸识别完整项目实战》系列博文第1部分,第2节《项目系统架构设计》,本章内容系统介绍:人脸系统系统的项目架构设计,包括:业务架构、技术架构、应用架构和数据架构四部分内容。
智能门锁在经过2018年的爆发直至近几年来的持续增长,目前市场上各类的产品基本都涵盖了密码、刷卡、指纹这几项关键的开门方式,人脸识别技术作为一种新的引用技术,成为众多厂家为追求产品差异化而形成的一种趋势。
大家知道,目前,人脸识别系统存在着争议。例如亚马逊此前因向执法机构出售人脸识别技术一事,登上了头条,遭到万人上书抨击。此外,国内外都有学校正在使用人脸识别摄像头,来监控学生。
本文是《人脸识别完整项目实战》系列博文第1部分,第一节《完整项目运行演示》,本章内容系统介绍:人脸系统核心功能的运行演示。
人脸检测只是人脸识别系统中的一步,当然是非常重要的一步;反人脸检测(躲开人脸检测)也只是反人脸识别的一种手段,在特定场景下是奏效的,但“头部左右倾斜15度以上”的“伎俩”是达不到这效果的,为什么呢?是
人脸识别是计算机视觉的一个子领域,它的应用范围非常广泛,现在已经成为世界各地的企业争相竞逐的新技术之一。考虑到市场的盈利现状,未来这项技术还会有更大的需求空间,所以作为机器学习的学习者,自己动手去从头开始构建一个人脸识别工具很有价值。
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
眼看着2020年上半年已经所剩无几了,大家也经历了一个不一样的学期,许多即将毕业的同学和准备换工作的朋友也在开始准备秋招了。
前面介绍了使用特征脸法进行人脸识别,这里介绍一下OpenCV人脸识别的另外两种算法,一种是FisherFace算法,一种是LBPH算法。
人脸识别技术原理简单来讲主要是三大步骤:一是建立一个包含大批量人脸图像的数据库,二是通过各种方式来获得当前要进行识别的目标人脸图像,三是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选。根据人脸识别技术原理具体实施起来的技术流程则主要包含以下四个部分,即人脸图像的采集与预处理、人脸检测、人脸特征提取、人脸识别和活体鉴别。
本文是《人脸识别完整项目实战》系列博文第1章《目录大纲篇》,本章内容系统介绍,《人脸识别项目完整实战》系列博文的目录结构,共8大部分53个章节。
最近,一群工程师基于 tensorflow.js core 框架,开发出一款可以在浏览器上运行的人脸识别 API——face-api.js,不仅能同时还可以识别多张人脸,让更多非专业 AI 工程师,能够低成本使用人脸识别技术。
目前谈论起人脸识别,已经不是什么高深莫测的东西了。很多人都用过,切切实实的走进了人们的生活中,也确实给很多人带来了便利。从火车站的身份证人脸对比,小区的人脸识别门禁,超市的人脸识别储物柜,再到家庭的人脸识别智能锁,手机上的人脸识别解锁,人脸识别支付,各种嵌入式上面的人脸识别逐渐走进人们的生活。不管是否承认,我们确实逐渐进入了一个人工智能越来越繁荣的时代。嵌入式的ai也吸引了一大批爱好者的积极跟进。本文结合这几年的国内嵌入式上人脸识别的发展,谈一谈我的一些想法和对未来发展的一些预测。
本文是《人脸识别完整项目实战》系列博文第3部分:程序设计篇(Python版),第1节《Python实时视频采集程序设计》,本章内容系统介绍:基于Python+opencv如何实现实时视频采集。
本篇博文是Python+OpenCV实现AI人脸识别身份认证系统的收官之作,在人脸识别原理到数据采集、存储和训练识别模型基础上,实现人脸识别,废话少说,上效果图:
4月13日结束的计算机视觉沙龙圆满落幕。本期沙龙从构建图像识别系统的方法切入,讲述腾讯云人脸识别、文字识别、人脸核身等技术能力原理与行业应用,为各位开发者带来了一场人工智能领域的技术开拓实践之旅。下面是范锦老师关于腾讯云人脸识别系统在传统行业的应用与落地的总结。
开始课程之前,需要准备一台安卓系统的手机,手机中安装AidLux软件,一般手机的应用市场就有,本次课程需要使用为面向开发者的内测版本AidLux 1.4beta,下载链接如下:
【新智元导读】 2017年的“315”落下帷幕,人脸识别技术公司纷纷躺枪。16日一大早,大家纷纷发表声明,表示自家的人脸识别技术还是相当安全的。本文整理了各家的回应,由此也可以看到,这些科技公司是否真的“躺枪”?人脸识别技术近年来持续火热,那么真实的行业发展状况如何?商业化应用中是否真的会如此轻易就被攻破?来看看专家们怎么说。 一年一度的“315” 落下帷幕,伴随着人工智能的火热,相关技术应用也在这场以“打假”、“维护消费者权益”为名的晚会上被点名。其中最受关注的一个便是——人脸识别。 晚会现场,主持人现
这是人脸识别系列的第5篇文章,前4篇文章可以在公众号的人脸识别栏里找到,这篇文章主要是解析CVPR 2014年的经典人脸识别论文DeepID1算法。论文的地址如下:http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf 。
这是本文的下半部分,本文的上半部分以一个演示视频介绍了该人脸识别方案,并介绍了方案的软硬件环境和框架。
随着人工智能技术的发展,其技术在各行各业也有了广泛的应用,比如人脸识别就是其中一种比较成熟、而且比较广泛的应用。
昨晚的央视315晚会上,人脸识别技术被曝存在安全隐患。不少观众看到主持人在现场技术人员支持下,仅凭两部手机、一张随机正面照片及一个换脸App,分别就一张”眨眨眼”的照片和一段”活体检测”场景模拟,成功“攻破”人脸识别系统。 一般业内人士看到的是主持人手里所持人脸识别App的技术漏洞;但对于普通观众来说,他们看到的是一个不甚熟悉的高科技技术应用背后的“巨大风险”——人脸识别技术怎么会被破解?为什么一个换脸App软件就能轻松换脸?它会不会分分钟“掏空”我的账户……经由央视这个大众平台一放大,即使只是出于提醒消费
在日常生活工作中,出现了人脸验证、人脸支付、人脸乘梯、人脸门禁等等常见的应用场景。这说明人脸识别技术已经在门禁安防、金融行业、教育医疗等领域被广泛地应用,人脸识别技术的高速发展与应用同时也出现不少质疑。其中之一就是人脸识别很容易被照片、视频、人脸模型等方式轻易蒙混,并且网络上也传出不少破解方法。针对这些问题,人脸识别技术其实也是进行了升级迭代,当前的人脸识别系统是需要具有人脸活体检测功能的。那么人脸活体检测功能到底是什么呢?
作者 | 彭建宏(旷视科技产品总监彭建宏) 整理 | Just 出品 | 人工智能头条(公众号ID:AI_Thinker) “刷脸”曾一度是人们互相调侃时的用语,如今早已深深地融入我们的生活。从可以人脸解锁的手机,到人脸识别打卡机,甚至地铁“刷脸”进站…… 人脸识别技术越来越多地应用在了各种身份验证场景,在这种看起来发生在电光火石之间的应用背后,又有哪些不易察觉的技术在做精准判别?算法又是通过何种方式来抵御各种欺诈式攻击? 我们近期邀请到旷视科技产品总监彭建宏,他负责 FaceID 在线身份验证云服务的产品
人脸识别技术作为一种生物识别技术,在过去几十年中经历了显著的发展。其发展可以分为几个主要阶段,每个阶段都对应着特定的技术进步和应用模式的变化。
生物识别是根据人类生理特征(人脸、指纹、虹膜等)和行为特征(姿态、动作、情感等)实现身份认证的技术。在进行人体身份认证时,其主要通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性和行为特征来进行个人身份的鉴定。目前,常用的生物识别技术主要包括:人脸识别、指纹识别、虹膜识别、行为识别以及步态识别。
本文为人脸识别算法系列专题的综述文章,人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,文中我们将为大家总结近些年出现的具有代表性的人脸识别算法。请大家关注SIGAI公众号,我们会持续解析当下主流的人脸识别算法以及业内最新的进展。
在人脸识别应用中,很多场景能够获取某一个体的多幅人脸图像的集合(比如在监控视频中),使用人脸图像集来做识别,这个问题被称为基于模板的人脸识别(template-based face recognition)。
自20世纪下半叶,计算机视觉技术逐渐地发展壮大。同时,伴随着数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使该技术的革新。计算机视觉技术的应用十分广泛。数字图像检索管理、医学影像分析、智能安检、人机交互等领域都有计算机视觉技术的涉足。该技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域。经过近年的不断发展,已逐步形成一套以数字信号处理技术。计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。其中,人脸检测与识别当前图像处理、模式识别和计算机视觉内的一个热门研究课题, 也是目前生物特征识别中最受人们关注的一个分支。
本文来自旷视研究院,作者:闫东。AI 科技评论获授权转载。如需转载,请联系旷视研究院。
人脸识别既是一项起源较早的技术,又是一门焕发着活跃生命力、充满着学术研究魅力的新兴技术领域。随着近些年人工智能、大数据、云计算的技术创新幅度的增大,技术更迭速度的加快,人脸识别作为人工智能的一项重要应用,也搭上了这3辆“快车”,基于人脸识别技术的一系列产品实现了大规模落地。
但那时技术还不成熟,如果只抠出脸部区域的大小,一旦碰到歪脸抬头的姿势,就可能只拿到半张脸……
随着人脸识别技术日趋成熟,商业化应用愈加广泛,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁。目前基于动态视频人脸检测、人脸眨眼、热红外与可见光人脸关联等领先业界的人脸活体检测算法,已经取得了一定的进步。
最近耗费了巨大的心思为客户设计了人脸识别系统。这是我第一次利用人工智能技术为客户和自己产生收益。虽说人脸识别技术到目前为止已经非常成熟,但从“知行合一”的角度而言,很多人并没有真正掌握其根本原理,之所以有这个结论是因为,我相信绝大多数技术工作者自己无法通过编码来实现一套可商用的人脸识别系统,对技术而言,你做不到就等于你不懂。
计算机视觉和机器学习的融合为我们带来了前所未有的机会和挑战。从智能助手到自动驾驶,OpenCV 4.0+Python提供了强大的工具来实现各种应用。本文将带您深入探索如何在实际项目中应用这些技术,为您打开计算机视觉与机器学习的大门。
昨天,雷锋网AI掘金志其中的一个安防社群因为一个话题引发了不小的争论:“AI产品能否高效地实时识别出戴口罩的人是谁?”
PCA或K-L变换是用一种正交归一向量系表示样本。如果只选取前k个正交向量表示样本,就会达到降维的效果。PCA的推导基于最小化均方误差准则,约束是:u为单位正交向量。推导结果是,正交向量就是归一化的协方差矩阵的特征向量,对应的系数就是对应的特征值。使用PCA方法提取特征脸的步骤如下:
如今人脸识别系统已经广泛应用于我们的生活中,如数码相机、门禁系统、机场的安全设施 、桌面软件、互联网应用(如Facebook)等等[1]。然而今日的一则关于“高铁人脸识别抓逃犯”的新闻一出[2],在评论中又引发了一阵阵怀疑。怀疑的中心问题在于,人脸识别系统真的能准确无误地在数以亿计的面孔中找出匹配的嫌疑人吗? 降维:减少冗余信息 完整的人脸识别系统一般由多个模块组成,在进行人脸识别之前首先要进行人脸检测(即在一张完整的图片中探测到人脸区域),以及图片的预处理、归一化等步骤(例如自动把倾斜的照片摆正)。本文就
人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻的功能。从OpenCV2.4开始,加入了新的类FaceRecognizer,该类用于人脸识别,使用它可以方便地进行相关识别实验。
我们知道人脸识别在这几年应用相当广泛,人脸考勤,人脸社交,人脸支付,哪里都有这黑科技的影响,特别这几年机器学习流行,使得人脸识别在应用和准确率更是达到了一个较高的水准。
课堂是学生学习的主要场所,课堂学习是学生获取知识、培养能力、提高素质的主要渠道。系统科学的课堂考勤是保证各项教学计划有效落实和顺利执行的重要条件。有效的课堂考勤是创造良好学习氛围,形成良好班风、学风及增强学生的组织性和纪律性的必要条件,同时也是保证学校教学秩序的稳定、提高教学质量的重要措施。
导读:本文主要介绍了机器视觉的主要应用场景,目前绝大部分数字信息都是以图片或视频的形式存在的,若要对这些信息进行有效分析利用,则要依赖于机器视觉技术的发展,虽然目前已有的技术已经能够解决很多问题,但离解决所有问题还很遥远,因此机器视觉的应用前景还是非常广阔的。
如今,随着技术的不断进步,“变脸”技术不再是四川喜剧的“独门武功”。运用机器学习的方法,我们同样可以实现人脸“融合”。当然这里说的人脸融合指的是将两个人的人脸照片进行融合,至于融合的比例,要按照自己的喜好来定。人脸融合的效果我们先看视频。
以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。 首先看看现在的研究现状。如上的发展趋势可以知道,现在的主要研究方向
如果你觉得好的话,不妨分享到朋友圈。 以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。 首先看看现在的研究现状。如
github源码:https://github.com/ageitgey/face_recognition#face-recognition 以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分
以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。
领取专属 10元无门槛券
手把手带您无忧上云