关注腾讯云大学,了解最新行业技术动态 戳【阅读原文】查看55个腾讯云产品全集 一、课程概述 腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。可应用于智慧零售、智慧社区、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。 【课程目标】 快速了解腾讯云人脸识别产品 了解腾讯云人
什么是大数据和人工智能,分享2019年我用Python爬虫技术做企业大数据的那些事儿
现在我建议大家要有自己的域名、云服务器方便开发调试,也方便交付。那现在,还要求大家要有自己的公司,这样就可以了做支付方面的工作了,还有签合同有些也要求有公司。
中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所成功举办了第四期「CSIG 图像图形学科前沿讲习班」。
传统体温计、体温枪等测温方式需要大面积、近距离接触,既危险又低效。在 AI、物联网等技术的发展与支撑下,红外体温检测仪首先是高效精准排查的第一层保护网,同时又保证了在全面排查下出行的高效性。
如果不是这次疫情,恐怕还没有太多人去关注非接触式无感红外人体测温系统。这次疫情中,国家倡导不聚集、少接触的原则,以减少感染几率,防疫人员更要做好防护与保护措施,而传统体温计、体温枪等测温方式需要大面积、近距离接触,既危险又低效。所以这次的疫情防控,在 AI、物联网等技术的发展与支撑下,红外体温检测仪首先是高效精准排查的第一层保护网,同时又保证了在全面排查下出行的高效性。
内容提要:行人重识别技术,广泛应用于智慧城市、自动驾驶等场景中,近年取得飞速发展。这也得益于训练数据规模的扩大、深度学习的发展。
11月,图像分析、人脸识别、自然语言处理NLP推出新功能。腾讯云AI团队联合腾讯优图、AILab、微信智聆、微信智言等实验室,帮助合作伙伴和客户高效打造针对性的解决方案,助力各行各业的数字化和智能化转型。
人脸识别、图像分类、语音识别是最早的深度学习取得突破的主要几个技术方向。在2014年前后,多家技术公司纷纷宣布其利用深度学习在LFW上取得的最新成果,此为深度学习技术在人脸识别领域的“小试牛刀”。随后,商汤、Face++等国内的多家技术公司针对金融行业人脸认证这一需求持续改进算法,随着PK的不断升级,人脸认证图像相对可控下的人脸识别性能不断被刷新,固定识别通过率为90%,识别误匹配率指标被降低了好几个数量级,此为深度学习技术在人脸识别领域的“硕果初尝”。类似的技术被用在了手机APP的人脸登录、相册管理等,这里不一一赘述。
随着科技的飞速发展和信息化社会的到来,智慧校园已经成为教育领域的一种新型发展模式。智慧校园的需求和发展趋势日益显现,其建设已成为当今教育信息化发展的重要方向。
大数据文摘记者谭婧、魏子敏 安防已经成为人工智能落地场景中的重要赛道,其涉及的智能视频分析、人脸识别等关键技术也在研究领域受到了极大的关注。那么安防领域中涉及的人脸识别有何痛点?人工智能+安防的未来又有哪些新的趋势? 10月29日,2017年第十六届中国国际公共安全博览会(CPSE安博会)在中国深圳会展中心开幕。在政府管理论坛上,清华大学媒体大数据认知计算研究中心主任王生进教授发表了题为《人像态势识别及其在智能视频监控中的应用》的演讲,他指出,目前我国视频监控建设卓有成效,摄像头的数量惊人,达到了2000多
本次报告的内容主要关注当前的机器学习技术如何助力物理世界向数字世界的转变,从传统的二维成像开始讲起,涵盖了2.5D视觉、光场成像和重聚焦、三维重建等内容,同时指出传统的计算机视觉和图形学技术缺少对语义信息的理解,感与知应该协同起来。以三维人脸为例,介绍了研究团队引入人脸表情等先验知识进行高精度重建的最新研究成果,同时将引入先验知识的思想扩展到三维人体重建,然后介绍了使用机器学习技术进行渲染重建逼真唐三彩模型的研究工作,最后对感知协同、可学习的渲染等研究趋势进行了概括总结。
CV君:本文为52CV群友上海科技大学陈安沛同学投稿,介绍了他们ICCV 2019最新人脸3D重建的工作。效果非常赞,代码也已开源,欢迎大家参考~
金磊 萧箫 发自 凹非寺 量子位 报道 | 公众号 QbitAI 一年一度的毕业论文查重“盛宴”,又开始了。 然而,隔着屏幕都能感受到毕业生们的痛苦: 怎么回事? 论文查重,不应该就是一个检验科研水平、毕业知识掌握程度的考核吗,怎么像是走了遭地狱似的? 没错,经历过查重的同学们都知道: 无论论文是否原创,查重都像是给论文蜕层皮,有时候改得面目全非都过不了。 网友:就连专业术语都飘红,正常吗?我直接重新定义? 除此之外,往往还得自掏腰包,提前对论文进行查重,因为知网只有2次审核的机会。 从网上来看,
原文链接:https://cuijiahua.com/blog/2019/10/life-46.html
腾讯云人脸识别产品基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、静态活体检测等多种功能,主要以公有云API的方式,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于智慧零售、智慧社区、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
鱼羊 发自 凹非寺 量子位 | 公众号 QbitAI 这位胖友,你听说过“镜头恐惧”吗? 包括但不限于,总是尽力躲避镜头,即使拍照也往往表情尴尬,笑不出来。 那感觉,就是人家拍照是回眸一笑百媚生: 我一上相就是“我是谁”、“我在哪”、“我在干什么”灵魂三连。 现在各种算法技术这么发达,就不能我往镜头前一站,相机自动帮我微笑到位吗??? 真别说,本老镜头恐惧症患者仔细查了查,发现这事儿还挺靠谱。 比如前面这张阮玲玉露齿而笑的照片,原片其实长这样: 嘴角这么一扬,老照片里的清冷美女,是不是就多了一些鲜活
随着计算机技术和网络技术的飞速发展和Internet应用的普及,电子学术资源的大量涌现,如数字学术资源的检索平台,学术论文资料库和世界各地大学自行建立的学术文献资料库。互联网的普及同时,也为抄袭、剽窃、非法传播的学术论文提供了便利。在我国大学毕业生的毕业论文中,已有了抄袭剽窃现象,引起了各界的广泛的重视。预防文章剽窃,整顿学术风气,对学生的毕业论文进行检测查查,是一个很有意义的课题。
除了空中消毒、喊话外,在测温设备紧缺的情况下,无人机也紧急上阵,被拿来用做远程测温。
为避免聚集性疫情发生,阻断病毒传染、及时发现疑似病人,全国各地均已采取最严格的发热人员排查措施,防止疫情进一步向外扩散。返工潮人流涌动,站好温控第一道岗,成为疫情狙击战的关键。目前机场、高速公路出口与服务站、地铁站、高铁站、超市、写字楼、小区、学校、场馆、工厂等人群高度聚集、高流动的公共场所与活动密集区,都需要对大流量群众进行实施体温监测。
云开发(Tencent Cloud Base,TCB)是腾讯云为移动开发者提供的一站式后端云服务,它帮助开发者统一构建和管理资源,免去了移动应用开发过程中繁琐的服务器搭建及运维、域名注册及备案、数据接口实现等繁琐流程,让开发者可以专注于业务逻辑的实现,而无需理解后端逻辑及服务器运维知识,开发门槛更低,效率更高
世界级ReID算法,加上自研AI芯片,业界期待的下一个计算机视觉领域“杀手级应用”已然到来。
AI 视觉产品在我们腾讯云-人工智能的产品目录下,包括人脸识别、人脸特效、人脸核身、图像识别、文字识别等。 流计算 Oceanus 在腾讯云-大数据的产品目录下,是基于 Apache Flink 构建的企业级实时大数据分析平台。 AI 视觉产品是按调用量计费,毕竟涉及到钱,用户对计量数据准确是非常敏感的; 另外调用量本身也比较大,如何保证数据的准确一致也是一个比较大的挑战。 数据不准: 主要包括数据丢失和数据重复(当然可能有其他问题比如上报的数据本身错误等,暂不属于本次讨论范围)。 数据丢失: 相当于调用量少算,会影响我们的收入。一方面我们通常重试、持久化等方式尽量减少数据的丢失,目标当然是完全不丢,但很难做到100%不丢。另一方面很少量的数据丢失对于实际收入影响很小,对用户基本没有影响。 数据重复: 相当于调用量多算就会多收用户钱,用户一旦发现肯定会投诉过来。所以是必须要去解决的,但是数据量很大,要做到精确去重比较难。
来源: blog.csdn.net/Gaowumao?type=blog 前言 想自己搞一个人脸识别玩玩,随着开始查找资料来研究这方面的信息,还好有好几家公司都有提供这方面的免费API,也是省下来很
作者:kaibinli(李凯斌),腾讯 CSIG 专家工程师 | 导语:介绍下最近使用 Flink 来对计费数据进行去重的具体做法 一. 背景 AI 视觉产品在我们腾讯云-人工智能的产品目录下,包括人脸识别、人脸特效、人脸核身、图像识别、文字识别等。 流计算 Oceanus 在腾讯云-大数据的产品目录下,是基于 Apache Flink 构建的企业级实时大数据分析平台。 AI 视觉产品是按调用量计费,毕竟涉及到钱,用户对计量数据准确是非常敏感的;另外调用量本身也比较大,如何保证数据的准确一致也是一个比较大的
想自己搞一个人脸识别玩玩,随着开始查找资料来研究这方面的信息,还好有好几家公司都有提供这方面的免费API,也是省下来很多功夫。一开始采用的是face++,但是在执行到最后一步人脸搜索时出现问题,一直提示INVALID_OUTER_ID,跟着官方文档,一步步抽离再封装,最终还是以失败告终,无奈只能选择放弃。接着辗转第二家 百度AI ,这次还是比较顺利的,中间只出现过一次错误 ❌ ,而且官方大大还给出了解决方案,很是贴心,最终还是实现了开始的预想:成功使用人脸来实现注册和登录功能。
当付款无需现金 签到只需刷脸时 科技正无声无息地改变着我们的生活方式 2017年已进入倒计时 这一年科技的世界又发生了哪些变化呢 快来看看 DATA 消失的“数据孤岛” 数据资源成为部分应用技术发展的“砖头瓦片”: 利用大数据方法寻找地震余震捕捉方案 利用共享单车使用痕迹优化车辆布局 利用社交平台数据痕迹进行商品推送 …… 举几个栗子 云南省 中医药数据中心 汇集了中医药信息数据方剂1317个、疾病252种、临床指南152条,为全省974个公立基层医疗机构中医馆和广大基层中医从业人员提供了专业权威强
作者:闻菲 【新智元导读】1月23日,依图宣布在新加坡设立首个海外办事处,联合创始人林晨曦接受新智元采访,分享了做安防做到国内“绝对No.1”的依图商业化、人才和进军海外市场的思考。林晨曦认为,AI应该与行业结合,做重做深,与其追求千人千面的解决方案,不如深刻思考,找到共通的痛点,正确理解问题。林晨曦还表示依图会进军语音和NLP,在这个领域也做到超越人类水平。 想象你站在列车的站台上,听着远处传来隆隆的声响,你知道列车要来了但还没有来,你听声音觉得列车还很远,但一旦列车到达,稍不注意错过上车的时机,列车就会
CCF-腾讯犀牛鸟基金由腾讯与中国计算机学会联合发起,旨在通过搭建产学合作平台,连接产业实践问题与学术科研问题,支持海内外优秀青年学者开展与产业结合的前沿科研工作。 2018年CCF-腾讯犀牛鸟基金共涵盖机器学习、计算机视觉及模式识别、语音技术、自然语言处理、大数据技术、区块链等6个重点技术领域,涉及31项研究命题。 未来,我们将分三期对研究命题进行详细介绍,欢迎青年学者关注了解,希望大家可以从中找到适合自己的申报命题。 一、机器学习 1.1 面向图数据的深度卷积网络研究 深度神经网络在基于网格数据(如图片
12月11日,2021年腾讯犀牛鸟精英科研人才培养计划正式对外发布。计划截止申报时间为2021年1月28日24:00。 本年度精英科研人才计划将延续人工智能领域顶尖科研人才培养,发布包含机器人、AI医疗、量子计算、智慧城市等12个前沿热议方向,71项研究课题。入选学生将由校企导师联合制定专属培养计划,并获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将为学生搭建线上和线下学习、交流平台,帮助学生挖掘更多潜能。 本期小编整理了该计
App精细化运营的必由之路是什么?一定是要搭建强大的数据统计管理系统,在此基础上进行高效的分析和运营。openinstall的应用统计功能就能满足全面的App数据统计和分析需求。
人脸识别: Face Recognition 基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于智慧零售、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。 人脸核身: 腾讯云慧眼(原金融级身份认证升级版)是一组对用户身份信息真实性进行验证审核的服务套件,提供各类认证功能模块,包含证件 OCR 识别、活体检测、人脸1:1对比等能力,以解决行业内大量对用户身份信息核实的需求,广泛应用于金融、运营商、共享出行等领域。
由于巨大的利益,论文造假屡见不鲜,在部分国家或地区甚至形成了论文造假的产业链。目前大部分论文查重系统只能检查论文文字,不能检查图片。因此,论文图片查重已然成为了学术论文原创性检测的重要部分。
近日、Bestsdk对其本站开发者SDK使用情况进行调查,整理了最受欢迎SDK数据评选,其中2016作为视频元年,我们见证了互联网又一个奇迹的诞生,视频直播从默默无闻到百家齐放,让无数的互联网用户与开
现在国家在鼓励做大数据、全面进行数字化中国建设,很多企业包括很多有前瞻性的创业人都开始进军大数据,各种根据自己的擅长领域开始储备数据源,我们需要做大数据第一步就是利用网络爬虫技术解决数据源聚合问题。我2018年主要利用python3+mysql+cookie池+代理IP池自己研发了一套AI智能深度数据挖掘系统,主要是解决企业工商数据源、商标数据源、专利数据源、招标中标数据源、土地数据源、食品药品数据源等多种国家开放的数据源的聚合。当时在做企业工商数据源聚合挖掘时候遇到了封IP、验证码、还有会员登陆等等各种反爬机制,最终我通过各种技术方式解决了所有问题,下面将分享一下个人的一些经验。
CCF-腾讯犀牛鸟基金由腾讯与中国计算机学会联合发起,旨在通过搭建产学合作平台,连接产业实践问题与学术科研问题,支持海内外优秀青年学者开展与产业结合的前沿科研工作。 2018年CCF-腾讯犀牛鸟基金共涵盖机器学习、计算机视觉及模式识别、语音技术、自然语言处理、大数据技术、区块链等6个重点技术领域,涉及31项研究命题。 未来,我们将分三期对研究命题进行详细介绍,欢迎青年学者关注了解,希望大家可以从中找到适合自己的申报命题。 一、机器学习 1.1 面向图数据的深度卷积网络研究 深度神经网络在基于网格数
本篇是神经网络体系搭建的第五篇,解决体系搭建的项目实战,详见神经网络体系搭建(序)
由于之前分享的代码有获取过微信好友头像,所以当时第一反应是通过itchat微信接口获取好友信息,比对两个人的好友信息列表就可以实现了。按理说这么简单的话,应该早有现成的代码了,然而并没有搜到,那正好,拿来练练手!
大数据中心的数据建设如火如荼,针对其中城市中的视频监管及算法分析,各卡口监控、治安监控,电警监控不同网络、不同地域,如何进行视频融合、进行统一监管,则是大数据中心解决方案数据汇聚的重中之重。
随着云、物联网、互联网网络、光网、宽带、5G的发展,大数据燃料非常充足,未来的少人化工厂、虚拟社区、私人定制等服务都将是智能化场景的最终形态,这使得如何实现更自然的人机交互成为当下十分重要的课题。
✎ 文 | 常江龙 在图像分析应用中,海量图片样本的有效自动化过滤是一项重要的基础工作。本文介绍一种基于多重算法过滤的处理方案,能够自动提取有效图像样本,极大减少人工标注的工作量。 作者:常江龙,苏宁云商IT总部资深算法专家。拥有多年的图像及视觉相关算法研发经验,目前专注于基于深度学习的图像内容分析算法平台的开发及优化,面向商品、人脸、OCR等图像算法实用技术领域。 责编:何永灿,欢迎人工智能领域技术投稿、约稿、给文章纠错 背景及问题描述 深度学习技术在计算机视觉领域取得了巨大的成功,其标志性事件之一就是
我们都知道未来互联网最大的趋势就是大数据和AI人工智能。在大数据时代如果谁掌握了数据源谁就掌握了财富。像天某查、企某查、启某宝等这种大数据公司主要就是通过爬虫技术把政府公开的工商数据聚合集中起来,然后做成一个大数据库,提供给用户使用,来实现大数据商业化目的。
人脸识别在LFW超越人的识别能力之后,就很少有重大的突破了,逐渐转向视频中人脸识别或人脸属性学习等方向。CV顶级会议的接受论文量也出现了逐渐平稳的趋势。 而行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。 给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补目前固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合 ,可广泛应用于智能视频监控、智能安保等领域。 行人重识
东邪西毒南帝北丐们,各有各的招数:以假乱真的仿生人、跟邓亚萍旗鼓相当的乒乓机器人、还有云从科技御眼重明“关上灯也认识你”、人工智能医疗阅片……
半年前的保险圈,忽然被一个平安保险的广告刷屏。说的是借助人工智能技术,广告片中的胡歌,可以通过App来完成拍照上传资料、电子签名等功能操作,进行线上理赔申请,从提交到理赔款到账,整个流程仅耗时30分钟。 无独有偶,8月19日,百度集团副总裁张旭阳在“金融风险防范与财富管理市场发展”中国财富管理50人论坛上也表示,互联网金融没有“寒冬”,互金将进入人工智能阶段! 很显然,对于金融机构来说,与人工智能技术的结合已经成为非常现实的下一站,各家也都在争先布局。 整个金融保险行业的服务核心流程包括“产品设计–售前–承
今天,智联万物的生活在我们身边无处不在:个人使用的智能家居、可穿戴设备,工业自动化设备与大量传感器……科技正在改变我们的生活。
不知道看过《碟中谍5》的朋友对其中一个场景是否还有印象:阿汤哥的搭档在破解了指纹解锁、三重物理旋转密码锁挑战后,迎来了“步态识别锁”。这项挑战无疑是对生物体的身体及步态进行360度无死角扫描,用来判断和识别进入者的身份。 作为压轴挑战,我们能够猜测出步态识别在身份认证方面是有一定的优势的。有资料显示,现有的生物特征包括生理特征及行为特征。生理特征包括人脸、指纹、DNA、虹膜以及静脉等等,行为特征包括语音、步态和笔迹等等,这些生物特征都具有普遍性、唯一性和稳定性,能够用于不同场景下的身份识别和认证。 尽管人脸
年初由ChatGPT引发的AI浪潮奔涌至今,除了OpenAI推出的当红炸子鸡之外,中文互联网内热度最高的产品,非前段时间霸屏的「妙鸭相机」莫属了。
Hello,大家好,我是一个大二计算机系的菜鸟,在这个漫长的寒假中,我完成了自己的第一个项目,基于微信小程序云开发的校园交易互助平台。下面跟大家谈一下我的理解:
来源 | 腾讯SaaS加速器首期项目-WakeData ---- WakeData技术团队近日在算法优化上取得显著成果,在无损照片精度的条件下,将人脸识别速度提升了2.3倍,原先一秒钟识别约83张人脸照片,提速之后,一秒钟可识别约200张照片,极大提升了人脸识别服务的响应速度,为客户提供更优质的服务体验。 AI人脸识别是机器学习平台的上层应用之一,本次算法的优化是对机器学习平台底层逻辑的加速,平台上层应用,如计算机视觉、智能推荐、趋势预测等,都将在效率上得到极大提升。 计算机视觉 ▶
领取专属 10元无门槛券
手把手带您无忧上云