导读:在线社交媒体平台的发展,带来了细粒度检索、视频语义摘要等媒体智能服务的巨大需求。现有的视频理解技术缺乏深入的语义线索,结合视频中人物的社交关系才能更完整、准确地理解剧情,从而提升用户体验,支撑智能应用。这里主要介绍我们将动态分析和图机器学习相结合,围绕视频中的人物社交关系网络所开展的两个最新的工作。主要内容包括:
在大数据时代,通过对目标人物的轨迹、通信、社交、出行、网络等多模态行为进行挖掘并建立人物画像模型,并依托人物基础特征和高层特征,实例化人物画像,支撑有关部门分析人员全方位了解目标人物的行为、活动、状态、基本属性等信息,同时能够基于人物画像指导人物活动规律分析、人物能力分析、人物动向分析等应用。
專 欄 ❈ 罗罗攀,Python中文社区专栏作者 专栏地址: http://www.jianshu.com/u/9104ebf5e177 ❈ 人一生都可能无法逆天改命,但你却是要去奋斗一把。本文章
作者:郑孙聪,腾讯 TEG 应用研究员 Topbase 是由 TEG-AI 平台部构建并维护的一个专注于通用领域知识图谱,其涉及 226 种概念类型,共计 1 亿多实体,三元组数量达 22 亿。在技术上,Topbase 支持图谱的自动构建和数据的及时更新入库。此外,Topbase 还连续两次获得过知识图谱领域顶级赛事 KBP 的大奖。目前,Topbase 主要应用在微信搜一搜,信息流推荐以及智能问答产品。本文主要梳理 Topbase 构建过程中的技术经验,从 0 到 1 的介绍了构建过程中的重难点问
六人定律,相信大家一定都不会陌生。简单的说,你只需要通过6个人,就可以认识到世界上所有的人。足以说明,世界就像一张网,任何事物之间都能找到关系。
names用于存入小说人物和出场次数;relationships保存人物关系的有向边,该字典的键为有向边的起点,值为一个字典edge,edge的键是有向边的终点,值是有向边的权值,代表两个人物之间联系的紧密程度;linenames存入每行小说出现的人物;all_names是小说所有人物。
---- 新智元报道 编辑:桃子 拉燕 【新智元导读】《巫师》第二季,还没搞清人物关系?外国小哥Milán Janosov近日发了一篇论文专门研究这部剧。他通过AI对原著系列中的7本书进行梳理后,绘出了一张完美人物关系图。 一口气刷完《巫师》,人物情节乱如麻。 外国小哥Milán Janosov直接用AI对人物社交关系网络梳理了一遍。下面2个节点中的连线,代表在小说中的5句话里同时出现的人物。 一个Geralt以为中心,另一个以Ciri为中心。 是不是看过后,只能用豁然开朗来形容。 追剧最高
点击上方蓝字每天学习数据库 ---- 万众瞩目的《权力的游戏》第八季,伴随着“史诗级大烂尾”的哀怨声,终于完结了! 面对剧中错综复杂的人物关系,新粉们是不是已经捋不清楚了?不过,看到人物、节点、关系、属性,这些熟悉的名词,各位想到了什么? 是的,图数据库!一向以处理“关系的连接”称霸江湖的图数据库 接下来我们试一试好玩的,用图数据库Neo4j,来梳理一下权游的人物关系图。 Ps:贴心的小编在后面奉上了Neo4j最全的安装配置教程!快快收藏起来~ 首先总览一下剧中人物关系图,几行代码就可清
分享嘉宾:孙瑞鸿 腾讯大数据 编辑整理:赵文娇 出品平台:DataFunTalk、AI启蒙者 导读:随着数据多样性的发展,图计算已经成为业界的一个重要的研究方向,其中图神经网络广泛应用于图的表征学习,与传统的图学习相比,既能学习图网络的拓扑结构,也能聚合邻居特征,从而能够有效的学习到图网络中的信息,为后续的推荐工作起到关键作用。 01 图神经网络简介 1. 万物互联 以社交网络的构建方式为例,之前主要以“关注关系”为基础进行构建,现在则会多方位的考虑到“点赞、分享、评论”等数据。图算法的实践应
训练CNN网络,以从所有检测部位中选取最具描述属性的人体部分;并结合整体人体作为归一化的姿态深度表示.
它解决了Stable Diffusion等传统AI绘图工具在画人时图像不连贯、姿态不自然的问题。
基于生成对抗网络(GAN)的动漫人物生成近年来兴起的动漫产业新技术。传统的GAN模型利用反向传播算法,通过生成器和判别器动态对抗,得到一个目标生成模型。由于训练过程不稳定,网络难以收敛,导致生成的图像缺乏多样性和准确性,甚至会产生模式崩溃。本文基于深度学习,参考相关实战项目pytorch-book,学习网络的训练方法,采用经过标准化处理和分类的动漫人物面部图像知乎用户何之源分享的素材,训练DCGAN,实现动漫人物图像自动生成。在训练过程中,控制实验参数,进行定量分析和优化,得到可自动生成动漫人物图像的生成器模型。主要工作如下:
https://github.com/human-centered-ai-lab/dat-kandinsky-patterns
大家好,我们来共同分享创新智能应用研究中心的人工智能技术在公安大数据方面的应用探索。作为集团公司的研发引擎,我们的技术研发需要面向市场需求,面向实际业务场景。新兴ICT行业是集团DICT领域的重要收入来源,公安行业具有典型的大数据应用场景,我们的人工智能技术也在其中找到了施展空间核心技术也带来了差异化竞争优势。我们从技术维度出发,介绍一些公安应用中的技术实践。
本文长度为2000字,建议阅读5分钟 本讲座选自清华大学统计学研究中心邓柯副主任于2015年12月23日在清华RONGv2.0系列论坛之 “社会关系网络与大数据技术”专场上所做的题为《为历史上的政治精英建立亲属关系网络》的演讲。 演讲全文: 邓柯:非常高兴,也非常感谢到场的嘉宾和同学来参加这样的活动。早上大家讲了很多Social Network的问题,但是基本上要假定我首先得有一个SocialNetwork,像Face Book这样在网上有一个东西在那里放着的。 有一些Social Network虽然
全球计算机视觉三大顶会之一 CVPR 2019 (IEEE Conference on Computer Visionand Pattern Recognition) 于 6月 16~20日 在美国洛杉矶如期举办。
本文作者为携程平台UED团队,同时感谢机票、度假、酒店UED团队协同搭建插画系统。
合成特定姿态下的人物图像,并进一步让人物动起来,做出逼真,连贯的动作,是多媒体领域颇具趣味的研究方向。近年来,图像生成及图像翻译领域快速发展,为人物动作视频合成问题提供了有效的实现路径。利用骨架+纹理特征合成视频帧的研究思路,现有研究取得了一定突破,已经能够合成较为流畅的高分辨率人物动作视频,但在处理遮挡,提升动作真实性,以及特征解耦等方面还有明显改进空间。本次讲座将带大家一同回顾人物动作视频生成的发展历程,解读若干最新的重要成果,并同大家共同探讨未来的发展趋势。
《庆余年》里面人物关系复杂,如果能画出一个人物关系图谱,可以直观的理解其中人物关系,更好的追剧。
在人工智能应用层出不穷的今天,作为软件从业者,我们都非常关注如何在自己研发的应用中使用人工智能技术,以提高软件的智能化水平。
9月8日-14日,备受瞩目的2018欧洲计算机视觉大会(ECCV 2018)在德国慕尼黑召开, ECCV两年举办一次,与CVPR、ICCV共称为计算机视觉领域三大顶级学术会议,每年录用论文约300篇。
《海贼王》(英文名ONE PIECE) 是由日本漫画家尾田荣一郎创作的热血少年漫画,因为其宏大的世界观、丰富的人物设定、精彩的故事情节、草蛇灰线的伏笔,受到世界各地的读者欢迎,截止2019年11月7日,全球销量突破4亿6000万本^1,并被吉尼斯世界纪录官方认证为“世界上发行量最高的单一作者创作的系列漫画”^2。
👆点击“博文视点Broadview”,获取更多书讯 《梦华录》是最近一段时间讨论度颇高的一部电视剧,豆瓣评分一度高达8.8分,是近些年来评分较高的一部古装影视剧。其制作相对精良,画面精美,主要人物的性格特色明显,角色鲜明。并且,这部剧的内容本身当属“披着古装的现代都市剧”,许多情节都能引起人们的共鸣。 不过,今天我们不是来聊剧情的,而是想借这部剧来谈谈知识图谱。从有意思的事情中学习,才能高效地学为所用嘛! 众所周知,知识图谱是由实体和关系组成的网状结构的知识表示。 最新的研究表明,人脑就是通过知识与知识
机器之心专栏 作者:深度好奇R&D 深度好奇(DeeplyCurious.ai)近日在 arXiv 上发布的论文提出了一种基于神经符号智能(Neural-symbolic)的特定领域文本解析框架:Ob
本文是悉尼大学博士二年级学生侯志依据三篇发表在CVPR2021和ECCV2020的论文写成的综述文章。
今天写一篇短文,推荐一部台剧《我們與惡的距離》。目前豆瓣 9.4 分, IMDB 9.6分。
今天辰哥来教大家从一本小说/名著里面提取出人名,并对人名之间的关系进行统计(同一段里面人名两两出现),根据人名之间的关系进行绘制关系图--gephi
即使与 REST API 打交道这么多年,当我第一次了解到 GraphQL 和它试图解决的问题时,我还是禁不住把本文的标题发在了 Twitter 上。
说起灭霸的‘响指’,相信看过复仇者联盟4的人都不陌生。而小蜘蛛——汤姆·赫兰德被灭霸用响指消灭的场面也令人影响深刻——‘化为尘埃粒子消散’。今天就为大家带来如何制作粒子特效。
【导读】9 月 8 日-14 日,每两年举办一次的 2018 欧洲计算机视觉大会(ECCV 2018)在德国慕尼黑召开,本次会议总共收到了 2439 篇有效的论文,相比上一届 2016年会议增加了 65% ,其中有 776 篇被接受( 31.8 % )。可以说,今年是国内各高校、企业研究机构收获丰富的一年,无论是过去的 CVPR、ICCV 大会,都是华人的成果占据半壁江山,可见国内计算机视觉这两年来的迅猛的发展。
ControlNet 是一种通过添加额外条件来控制扩散模型的神经网络结构。它提供了一种增强稳定扩散的方法,在文本到图像生成过程中使用条件输入(如边缘映射、姿势识别等),可以让生成的图像将更接近输入图像,这比传统的图像到图像生成方法有了很大的改进。
在我还念中学的时候,每当心情不好,就靠读诗词来排遣,慢慢读得多了,就发现唐朝诗人之间存在着微妙的关系。比如杜甫非常喜欢李白,到了做梦都想见李白的地步:三夜频梦君,情亲见君意(梦李白)。而李白向孟浩然表过白:吾爱孟夫子,风流天下闻(赠孟浩然)。孟浩然的好基友则是王昌龄:数年同笔砚,兹夕间衾裯(送王昌龄之岭南)。
出于好奇心,我一度想理清楚他们之间的关系。但是全唐诗一共四万多首,再加上诗人之间经常称呼对方的别称,整理起来非常麻烦,慢慢的也就绝了这个念头。
授权转载自前进日志 作者 | 前进四先生 在我还念中学的时候,每当心情不好,就靠读诗词来排遣,慢慢读得多了,就发现唐朝诗人之间存在着微妙的关系。比如杜甫非常喜欢李白,到了做梦都想见李白的地步:三夜频梦君,情亲见君意(梦李白)。而李白向孟浩然表过白:吾爱孟夫子,风流天下闻(赠孟浩然)。孟浩然的好基友则是王昌龄:数年同笔砚,兹夕间衾裯(送王昌龄之岭南)。 出于好奇心,我一度想理清楚他们之间的关系。但是全唐诗一共四万多首,再加上诗人之间经常称呼对方的别称,整理起来非常麻烦,慢慢的也就绝了这个念头。 直到前不久
如果我们从不同的研究视角、研究目的以及多知识的不同认识程度对知识进行分类的话,可以分为以下几种:
AI 科技评论按:人类视觉系统有一个我们习以为然但其实极其强大的功能,那就是可以从平面图像反推出对应的三维世界的样子。即便在有多个物体同时移动的复杂环境中,人类也能够对这些物体的几何形状、深度关系做出合理的推测。
人类视觉系统有一个我们习以为然但其实极其强大的功能,那就是可以从平面图像反推出对应的三维世界的样子。即便在有多个物体同时移动的复杂环境中,人类也能够对这些物体的几何形状、深度关系做出合理的推测。
今天,一起用 Python 来理一理红楼梦里的那些关系 不要问我为啥是红楼梦,而不是水浒三国或西游,因为我也鉴定的认为,红楼才是无可争议的中国古典小说只巅峰,且不接受反驳!而红楼梦也是我多次反复品读的为数不多的小说,对它的感情也是最深的。 好了,不酸了,开干。
图数据库和知识图谱是管理图结构数据(包括节点(实体)和边(关系))的两大主流方案。图数据库利用基于图的数据模型存储信息,支持通过专用的图查询语言实现对图数据的查询和遍历;知识图谱通过整合推理和派生新知识的机制,增强了图数据库的功能。这种增强的表达力不仅让你能进行更高级的数据分析,还能从图中相互连接的数据点中提取洞察力。
上一期的推送,小F做了一些社交网络分析的前期工作。 传送门:Python数据可视化:平凡的世界 比如获取文本信息,人物信息。 最后生成一个人物出现频数词云图。 本次来完成剩下的工作。 实现《平凡的世界
作者 | 维克多 编辑 | 青暮知识图谱蕴含丰富的人类先验知识,具有重要的学术价值和广泛的应用前景。知识图谱推理作为知识图谱领域的核心技术,能够极大地扩展现有知识的边界,有力地辅助人类进行智能决策。2021年12月17日,中国科学技术大学教授,博士生导师,国家优青王杰在 CNCC 2021 “知识为意,图谱为形--基于图机器学习的知识推理”专题论坛上做了《基于表示学习的知识图谱推理技术——从简单推理到复杂推理》的报告。在报告中,王杰结合知识图谱近年来的研究趋势与应用场景,聚焦从单一图谱推理到联合外部信息推理
“Valar Morghuli,凡人皆有一死。” “没错,但那是‘凡人’。会数据的,都不是凡人。” ——DT君
想展示自己的完美舞姿吗?你现在只需要一段别人跳舞的视频,和自己的一张照片。最近,来自上海科技大学和腾讯 AI Lab 的新研究着实让很多人跃跃欲试。
不同于图像、自然语言这种欧式空间的数据,网络结构的数据——图,通常无法通过CNN或者RNN来处理,这就需要我们寻找其他的方法来处理图数据。图数据其实非常常见,例如社交网络关系、分子结构、论文互相引用的关系网络等等,所以如何表达网络节点的特征就十分重要,表达好了节点的特征,我们就可以用它做下游的分类、预测、聚类、可视化等等任务。
自 ChatGPT 问世以来,以通用人工智能为代表的 AI 技术发展开始“狂飙”,多家企业和研究机构入局大模型赛道,新应用场景不断涌现。如何理解通用人工智能技术将带来的巨大影响,并把握随之而来的机遇和挑战,是我们面临的两大关键问题。
《天龙八部》是金庸老先生的一部经典古装武侠爱情小说,1997 年由香港无线电视台拍摄成同名影视剧,李添胜执导,黄日华、陈浩民、樊少皇、李若彤、联袂主演。该剧讲述的是面对乱世,萧(乔)峰、虚竹、段誉三人开始了非同寻常的江湖生涯,遇见了诸如天山童姥、慕容复、大轮明王、丁春秋、游坦之、四大恶人等各色高手,生死情仇、爱恨别离、民族大义在因缘际会中施展等故事。
领取专属 10元无门槛券
手把手带您无忧上云