首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    二值化神经网络(BNN)综述

    【GiantPandaCV导语】二值化神经网络BNN由于可以实现极高的压缩比和加速效果,所以它是推动以深度神经网络为代表的人工智能模型在资源受限和功耗受限的移动端设备,嵌入式设备上落地应用的一门非常有潜力的技术。虽然目前的BNN仍然存在着很多不足,如模型精度仍然比全精度低了不少,无法有效地泛化到更复杂的任务上,依赖于特定的硬件架构和软件框架......,但我们同时也能看到BNN从最初的2015年ImageNet上只有27%的Top-1准确率发展到2020年ReActNet-C的71.4%的进步,这五年时间众多研究人员在这条道路上不断推动着BNN朝着更准更快更稳的方向发展,所以我们有理由相信,BNN未来可期!

    02

    深度学习算法优化系列九 | NIPS 2015 BinaryConnect

    当前CNN网络主要的运算集中在实数权值乘以实数激活值或者实数权值乘以实数梯度。论文提出BinaryConnect将用于前向传播和后向传播计算的实数权值二值化为, 从而将这些乘法运算变为加减运算。这样即压缩了网络模型大小,又加快了速度。论文提到,SGD通过平均权重带来的梯度来得到一些小的带噪声的步长,尝试更新权重去搜索参数空间,因此这些梯度非常重要,要有足够的分辨率,sgd至少需要6—8bits的精度。如果对权重进行量化,就会导致无法对权重直接求导,所以我们可以把二值化权重看成是带噪声的权重。论文认为,带噪声的权重往往能够带来正则化,使得泛化能力更好,类似Dropout,DropCconnect这种就是对激活值或者权重加入了噪声,它们表明只要权重的期望值是高精度的,添加噪声往往是有益处的,所以对权重进行量化理论角度是可行的。

    01

    深度学习模型压缩与加速综述

    目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上的重要原因。所以,卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,深度学习模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一。本文主要介绍深度学习模型压缩和加速算法的三个方向,分别为加速网络结构设计、模型裁剪与稀疏化、量化加速。

    04

    麻省理工 HAN Lab 提出 ProxylessNAS 自动为目标任务和硬件定制高效 CNN 结构

    摘要:NAS 受限于其过高的计算资源 (GPU 时间, GPU 内存) 需求,仍然无法在大规模任务 (例如 ImageNet) 上直接进行神经网络结构学习。目前一个普遍的做法是在一个小型的 Proxy 任务上进行网络结构的学习,然后再迁移到目标任务上。这样的 Proxy 包括: (i) 训练极少量轮数; (ii) 在较小的网络下学习一个结构单元 (block),然后通过重复堆叠同样的 block 构建一个大的网络; (iii) 在小数据集 (例如 CIFAR) 上进行搜索。然而,这些在 Proxy 上优化的网络结构在目标任务上并不是最优的。在本文中,我们提出了 ProxylessNAS,第一个在没有任何 Proxy 的情况下直接在 ImageNet 量级的大规模数据集上搜索大设计空间的的 NAS 算法,并首次专门为硬件定制 CNN 架构。我们将模型压缩 (减枝,量化) 的思想与 NAS 进行结合,把 NAS 的计算成本 (GPU 时间, GPU 内存) 降低到与常规训练相同规模,同时保留了丰富的搜索空间,并将神经网络结构的硬件性能 (延时,能耗) 也直接纳入到优化目标中。我们在 CIFAR-10 和 ImageNet 的实验验证了」直接搜索」和「为硬件定制」的有效性。在 CIFAR-10 上,我们的模型仅用 5.7M 参数就达到了 2.08% 的测试误差。对比之前的最优模型 AmoebaNet-B,ProxylessNAS 仅用了六分之一的参数量就达到了更好的结果。在 ImageNet 上,ProxylessNAS 比 MobilenetV2 高了 3.1% 的 Top-1 正确率,并且在 GPU 上比 MobilenetV2 快了 20%。在同等的 top-1 准确率下 (74.5% 以上), ProxylessNAS 的手机实测速度是当今业界标准 MobileNetV2 的 1.8 倍。在用 ProxylessNAS 来为不同硬件定制神经网络结构的同时,我们发现各个平台上搜索到的神经网络在结构上有很大不同。这些发现为之后设计高效 CNN 结构提供新的思路。

    05

    论文精读系列:rotated-binary-neural-network(RBNN)

    DNN(deep neural networks)在计算机视觉任务中取得了很好的效果,比如图像分类、目标检测、实例分割等。不过,大量的参数和计算的复杂度带来的高存储和高计算性能的限制,使得DNN很难应用在一些低性能的设备上。为了解决这个问题,提出了很多压缩技术:network pruning,low-rank decomposition,efficient architecture design,network quantization。其中,network quantization将全精度(full-precision)网络中的权重和激活值转换成低精度的表达。其中一个极端的情况就是 binary neural network(BNN 二值神经网络),它将权重和激活值的数值限制在两个取值:+1和-1。如此,相比全精度的网络,BNN的大小可以缩小32倍(全精度网络中一个双精度数值用32bit表示,BNN中一个数值用1bit表示),并且使用乘法和加分的卷积运算可以使用更高效的 XNOR 和 bitcount 运算代替。

    01
    领券