首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为新节点生成NaN坐标的力模拟

是指在云计算领域中,通过力模拟算法为新节点生成NaN(Not a Number)坐标的过程。NaN坐标表示无效的或未定义的坐标值。

力模拟是一种常用的物理仿真方法,用于模拟物体之间的相互作用和运动。在生成NaN坐标的力模拟中,通常会使用以下步骤:

  1. 节点初始化:首先,需要为新节点分配初始位置和速度。这可以通过随机生成的方式来实现,确保节点的初始位置和速度是随机的。
  2. 力计算:接下来,需要计算节点之间的力。常见的力包括引力和斥力。引力使节点相互吸引,而斥力使节点相互排斥。力的计算通常基于节点之间的距离和其他参数。
  3. 力模拟:根据计算得到的力,可以使用力模拟算法来模拟节点的运动。常见的力模拟算法包括Verlet算法、Euler算法和Leapfrog算法等。这些算法可以根据节点的位置、速度和受到的力来更新节点的状态。
  4. NaN坐标生成:在力模拟过程中,如果节点的位置计算出现错误或异常,可能会导致生成NaN坐标。NaN坐标表示节点的位置无效或未定义。这种情况可能发生在力模拟算法中的数值计算错误或边界条件处理不当等情况下。

NaN坐标的生成可能会对系统的稳定性和正确性产生负面影响,因此在实际应用中需要进行错误处理和异常检测。对于生成NaN坐标的节点,可以采取一些措施,如重新计算节点的位置或速度,或者将其标记为无效节点并进行相应的处理。

腾讯云提供了一系列云计算相关产品,可以用于支持力模拟和节点生成的应用场景。例如,腾讯云的弹性计算服务(Elastic Compute Service,ECS)提供了虚拟机实例,可以用于进行力模拟和节点生成的计算任务。此外,腾讯云还提供了对象存储服务(Object Storage Service,COS)和数据库服务(TencentDB),用于存储和管理节点数据。

更多关于腾讯云产品的详细信息,请参考腾讯云官方网站:腾讯云

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • KDD2021 | 用于预测蛋白质-配体结合亲和力的图神经网络

    本文介绍由中国科学技术大学和百度商业智能实验室等机构的研究人员合作发表于KDD 2021的研究成果:作者提出了一个基于图神经网络的模型SIGN(structure-aware interactive graph neural network),通过利用原子间的细粒度结构和相互作用信息来学习蛋白质-配体复合物的表征,从而更好地进行结合亲和力预测。SIGN由两部分组成:极坐标启发的图注意力层(PGAL)和成对相互作用池化(PiPool)。PGAL用来整合原子之间的距离和角度信息,进行三维空间结构建模。PiPool用来将蛋白质和配体之间的远程相互作用纳入模型中。在两个基准上的实验结果验证了SIGN的优越性。

    03

    NeurIPS 2021 | 通过动态图评分匹配预测分子构象

    从 2D 分子图中预测稳定的 3D 构象一直是计算化学中的一个长期挑战。而最近,机器学习方法取得了相比传统的实验和基于物理的模拟方法更优异的成绩。这些方法主要侧重于模拟分子图上相邻原子之间的局部相互作用,而忽略了非键合原子之间的长程相互作用。然而,这些未成键的原子在 3D 空间中可能彼此接近,模拟它们的相互作用对于准确确定分子构象至关重要,尤其是对于大分子和多分子复合物。在本文中,作者提出了一种称为动态图评分匹配 (DGSM) 的分子构象预测新方法,该方法通过在训练和推理过程中根据原子之间的空间接近度动态构建原子之间的图结构来对局部和远程相互作用进行建模。具体来说,DGSM根据动态构建的图,使用评分匹配方法直接估计原子坐标对数密度的梯度场。可以以端到端的方式有效地训练整个框架。多项实验表明,DGSM 的表现远超该领域一流水平,并且能够为更广泛的化学系统生成构象,例如蛋白质和多分子复合物。

    02

    MolFlow: 高效3D分子生成方法

    今天为大家介绍的是来自查尔姆斯理工大学的Simon Olsson团队的一篇论文。最近,3D药物设计的生成模型因其在蛋白质口袋中直接设计配体的潜力而获得了广泛关注。然而,目前的方法通常存在采样时间非常慢或生成分子的化学有效性差的问题。为了解决这些限制,作者提出了Semla,一个可扩展的E(3)-等变消息传递架构。作者进一步介绍了一个分子生成模型MolFlow,该模型使用流匹配和尺度最优传输进行训练,这是等变最优传输的一种新扩展。作者的模型在基准数据集上仅需100个采样步骤就能产生最先进的结果。关键是,MolFlow在不牺牲性能下只需20个步骤就能采样出高质量分子,相比于现有技术实现了两个数量级的速度提升。最后,作者比较了MolFlow与当前方法在生成高质量样本方面的能力,进一步展示了其强大性能。

    01

    Nat. Comput. Sci. | 基于拓扑表面和几何结构的3D分子生成方法

    今天为大家介绍的是来自侯廷军教授团队的一篇论文。计算机辅助药物发现的一个重大挑战是高效地从头设计药物。虽然近年来已经开始有一些针对特定结构的三维分子生成方法,但多数方法并没有完全学习到决定分子形态和结合复合物稳定性的原子间互动细节。因此,很多模型难以为各种治疗目标生成合理的分子。为了解决这个问题,作者提出了一个名为SurfGen的模型。这个模型设计分子的方式就像锁和钥匙原理一样。SurfGen由两个等变神经网络组成,它们分别捕捉口袋表面的拓扑互动和配体原子与表面节点之间的空间互动。SurfGen在多个基准测试中的表现优于其他方法,并且对口袋结构的高敏感性为解决由突变引起的药物耐受性问题提供了有效的解决方案。

    04

    Nat. Comput. Sci.|KarmaDock:针对超大规模虚拟筛选的基于深度学习的分子对接方法

    本文介绍一篇来自浙江大学侯廷军教授、谢昌谕教授、潘培辰研究员和之江实验室陈广勇研究员团队联合发表的关于分子对接方法的论文。该文章提出了一种基于深度学习的分子对接模型,KarmaDock,可以快速且准确的预测蛋白配体结合构象及其结合强度。该方法通过混合密度函数学习蛋白配体间最优距离分布用于结合强度打分,并将其作为归纳偏置,利用融合自注意力机制的EGNN模型来迭代更新分子坐标从而预测蛋白配体间结合构象。KarmaDock跳过了传统分子对接软件的构象搜索阶段,极大提升了分子对接的速度(0.017 s/complex),适用于超大规模的虚拟筛选。

    04

    用深度学习解决旅行推销员问题,研究者走到哪一步了?

    来源:机器之心本文约2600字,建议阅读9分钟本文分析了深度学习在路由问题方面的最新进展,并提供了新的方向来启发今后的研究。 最近,针对旅行推销员等组合优化问题开发神经网络驱动的求解器引起了学术界的极大兴趣。这篇博文介绍了一个神经组合优化步骤,将几个最近提出的模型架构和学习范式统一到一个框架中。透过这一系列步骤,作者分析了深度学习在路由问题方面的最新进展,并提供了新的方向来启发今后的研究,以创造实际的价值。 组合优化问题的背景 组合优化是数学和计算机科学交叉领域的一个实用领域,旨在解决 NP 难的约束优化

    01

    ICLR 2022 under review | 从零开始生成三维分子几何结构的自回归流模型

    今天给大家介绍的是ICLR2022上underreview的文章《An autoregressive flow model for 3d molecular geometry generation from scratch》。虽然目前已经开发了多种方法来生成分子图,但从零开始生成分子的三维几何结构问题并没有得到充分的探索。在这项工作中,作者提出了G-SphreNet,一种生成三维分子几何的自回归流模型。G-SphereNet采用了一种一步步将原子放置在三维空间上灵活的顺序生成方案,它并不直接生成三维坐标,而是通过生成距离、角度和扭转角来确定原子的三维位置,从而确保不变性和等变性。此外,作者建议使用球形信息传递和注意力机制进行条件信息提取。实验结果表明,G-SphreNet在随机分子几何结构生成和目标分子发现任务方面优于以往的方法。

    02

    ICML 2023 | DECOMPDIFF:解义先验的扩散模型进行基于结构药物设计

    今天给大家介绍的是美国伊利诺伊大学及字节跳动发表在ICML的一篇文章:DECOMPDIFF: Diffusion Models with Decomposed Priors for Structure-Based Drug Design。设计针对靶向结合位点的3D药物分子是药物发现中的基本任务。现有的基于结构的药物设计方法平等对待所有配体原子,忽视了配体原子在药物设计中的不同作用,对于探索庞大的药物样分子空间可能效率较低。本文受制药实践的启发,将配体分子分解为两部分,即臂和支架,并提出了一种新的扩散模型 DECOMPDIFF,其对臂和支架采用了分解的先验。为了促进分解生成并改善所生成分子的性质,作者在模型中同时结合了键扩散和采样阶段的有效性指导

    01

    Scalable Object Detection using Deep Neural Networks

    深度卷积神经网络最近在一系列图像识别基准测试中取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测一个边界框和图像中每个目标类别的置信度得分。这样的模型捕获目标周围的整个图像上下文,但是如果不天真地复制每个实例的输出数量,就不能处理图像中相同目标的多个实例。在这项工作中,我们提出了一个显著性激发的神经网络模型用于检测,它预测了一组与类无关的边界框,以及每个框的一个得分,对应于它包含任何感兴趣的目标的可能性。模型自然地为每个类处理可变数量的实例,并允许在网络的最高级别进行跨类泛化。我们能够在VOC2007和ILSVRC2012上获得具有竞争力的识别性能,同时只使用每张图像中预测的前几个位置和少量的神经网络评估。

    02

    ICML 2024 | 基于重要功能位点与小分子底物的生成式酶设计

    今天为大家介绍的是来自Lei Li团队的一篇论文。酶是由基因编码的生物催化剂,能够加速化学反应。那么,如何能自动设计出功能性酶呢?在这篇论文中,作者提出了EnzyGen,这是一种学习统一模型来设计各个功能家族酶的方法。作者的核心理念是基于重要功能位点和对应期望催化功能的底物生成酶的氨基酸序列及其三维(3D)坐标。这些位点是从酶数据库中自动挖掘出来的。EnzyGen由一种新颖的交错注意力网络和邻域等变层组成,能够捕捉整个蛋白质序列中的远程关联和3D空间中最近氨基酸的局部影响。为了学习生成模型,作者设计了一个联合训练目标,包括序列生成损失、位置预测损失和酶-底物相互作用损失。作者还构建了EnzyBench,一个包含3157个酶家族的数据集,覆盖了蛋白质数据库(PDB)中所有可用的酶。实验结果表明,EnzyGen在所有323个测试家族中始终表现最佳,在底物结合亲和力方面比最佳基线高出10.79%。这些发现证明了EnzyGen在设计具有高亲和力并与特定底物结合的结构良好且有效的酶方面的卓越能力。

    01

    Appium+python自动化(二十五)- 那些让人抓耳挠腮、揪头发和掉头发的事 - 获取控件ID(超详解)

    在前边的第二十二篇文章里,已经分享了通过获取控件的坐标点来获取点击事件的所需要的点击位置,那么还有没有其他方法来获取控件点击事件所需要的点击位置呢?答案是:Yes!因为在不同的大小屏幕的手机上获取控件的坐标点,不是一样的,而是有变化的,因此在不同的手机机型上,我们可能都需要重新获取坐标点,这么操作起来,如果操作控件特别的多,那么获取控件的坐标点就会显得特别的繁琐。因此我们可以通过获取控件的ID来避免获取控件坐标点的这种弊端。   通过控件ID实现自动化脚本的运行,就性能而言,会比控件坐标的实现差一些;但是对于不同分辨率的设备都通用,不需要动态变换坐标。控件ID的获取主要是通过HierarchyViewer。下面就HierarchyViewer从打开方式和使用两方面进行讲解。

    03

    Attention注意力机制的理解

    当我们人在看一样东西的时候,我们当前时刻关注的一定是我们当前正在看的这样东西的某一地方,换句话说,当我们目光移到别处时,注意力随着目光的移动也在转移,这意味着,当人们注意到某个目标或某个场景时,该目标内部以及该场景内每一处空间位置上的注意力分布是不一样的。---------(思考:对于图片,会有些特别显眼的场景会率先吸引住注意力,那是因为脑袋中对这类东西很敏感。对于文本,我们大都是带目的性的去读,顺序查找,顺序读,但是在理解的过程中,我们是根据我们自带的目的去理解,去关注的。 注意力模型应该与具体的目的(或者任务)相结合。)

    05

    GNN for Science: 腾讯AI Lab、清华共同发文综述等变图神经网络

    机器之心专栏 腾讯AI Lab, 清华AIR&计算机系 一文了解等变图神经网络的结构和相关任务。 近年来,越来越多的人工智能方法在解决传统自然科学等问题上大放异彩, 在一些重要的学科问题(例如蛋白质结构预测)上取得了令人瞩目的进展。在物理领域的研究中,非常多的物理问题都会涉及建模物体的的一些几何特征,例如空间位置,速度,加速度等。这种特征往往可以使用几何图这一形式来表示。不同于一般的图数据,几何图一个非常重要的特征是额外包含旋转,平移,翻转对称性。这些对称性往往反应了某些物理问题的本质。因此,最近以来,大量

    04

    Soft-introspective VAEs:超越AlphaFold2,揭示K-Ras蛋白新视野

    今天我们介绍华盛顿大学的David baker课题组发表在bioRxiv上的工作。探索蛋白质构象的整体,这些构象对功能有贡献,并且可以被小分子药物所靶向,仍是一个未解决的挑战。本文探讨了使用软自省变分自编码器(Soft-introspective Variational Autoencoders)来简化蛋白质结构集合生成问题中的维度挑战。通过将高维度的蛋白质结构数据转化为连续的低维表示,在此空间中进行由结构质量指标指导的搜索,接着使用RoseTTAFold来生成3D结构。本文使用这种方法为与癌症相关的蛋白质K-Ras生成集合,训练VAE使用部分可用的K-Ras晶体结构和MD模拟快照,并评估其对从训练中排除的晶体结构的采样范围。本文发现,潜在空间采样程序可以迅速生成具有高结构质量的集合,并能够在1埃范围内采样保留的晶体结构,其一致性高于MD模拟或AlphaFold2预测。

    03
    领券