学习 I2C 和 SPI 驱动的时候,针对 I2C 和 SPI 设备寄存器的操作都是通过相关的 API 函数进行操作的。这样 Linux 内核中就会充斥着大量的重复、冗余代码,但是这些本质上都是对寄存器的操作,所以为了方便内核开发人员统一访问 I2C/SPI 设备的时候,为此引入了 Regmap 子系统。
介绍 Sunxi 平台上 TWI 驱动接口与调试方法,为 TWI 模块开发提供参考。
I2C(Inter-Integrated Circuit BUS)是I2C BUS简称,中文为集成电路总线,是目前应用最广泛的总线之一。和IMX6ULL有些相关的是,刚好该总线是NXP前身的PHILIPS设计。
我们使用i2c控制器来写程序的话,就是:写某个寄存器的某一位,他就会自动的帮你发出S信号。
APP访问硬件肯定是需要驱动程序的, 对于I2C设备,内核提供了驱动程序drivers/i2c/i2c-dev.c,通过它可以直接使用下面的I2C控制器驱动程序来访问I2C设备。 框架如下:
总线、设备和驱动模型,如果把它们之间的关系比喻成生活中的例子是比较容易理解的。举个例子,充电墙壁插座安静的嵌入在墙面上,无论设备是电脑还是手机,插座都能依然不动的完成它的使命——充电,没有说为了满足各种设备充电而去更换插座的。其实这就是软件工程强调的高内聚、低耦合概念。
在嵌入式开发中,有时候需要确认硬件是否正常连接,设备是否正常工作,设备的地址是多少等等,这里我们就需要使用一个用于测试 I2C 总线的工具:i2c-tools。
在嵌入式开发仲,有时候需要确认硬件是否正常连接,设备是否正常工作,设备的地址是多少等等,这里我们就需要使用一个用于测试I2C总线的工具——i2c-tools。
1.I2C协议 2条双向串行线,一条数据线SDA,一条时钟线SCL。 SDA传输数据是大端传输,每次传输8bit,即一字节。 支持多主控(multimastering),任何时间点只能有一个主控。 总线上每个设备都有自己的一个addr,共7个bit,广播地址全0. 系统中可能有多个同种芯片,为此addr分为固定部分和可编程部份,细节视芯片而定,看datasheet。 1.1 I2C位传输 数据传输:SCL为高电平时,SDA线若保持稳定,那么SDA上是在传输数据bit; 若SDA发生跳变,则用来表示一个会话的开始或结束(后面讲) 数据改变:SCL为低电平时,SDA线才能改变传输的bit 1.2 I2C开始和结束信号 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。 1.3 I2C应答信号 Master每发送完8bit数据后等待Slave的ACK。 即在第9个clock,若从IC发ACK,SDA会被拉低。 若没有ACK,SDA会被置高,这会引起Master发生RESTART或STOP流程,如下所示: 1.4 I2C写流程 写寄存器的标准流程为: 1. Master发起START 2. Master发送I2C addr(7bit)和w操作0(1bit),等待ACK 3. Slave发送ACK 4. Master发送reg addr(8bit),等待ACK 5. Slave发送ACK 6. Master发送data(8bit),即要写入寄存器中的数据,等待ACK 7. Slave发送ACK 8. 第6步和第7步可以重复多次,即顺序写多个寄存器 9. Master发起STOP 写一个寄存器 写多个寄存器 1.5 I2C读流程 读寄存器的标准流程为: 1. Master发送I2C addr(7bit)和w操作1(1bit),等待ACK 2. Slave发送ACK 3. Master发送reg addr(8bit),等待ACK 4. Slave发送ACK 5. Master发起START 6. Master发送I2C addr(7bit)和r操作1(1bit),等待ACK 7. Slave发送ACK 8. Slave发送data(8bit),即寄存器里的值 9. Master发送ACK 10. 第8步和第9步可以重复多次,即顺序读多个寄存器 读一个寄存器 读多个寄存器 2. PowerPC的I2C实现
GPIO介绍GPIO:General Purpose Input Output (通用输入/输出)GPIOs are I/O pins that provide peripheral connections to the MSM™ chipset.GPIOs can be configured as a general purpose I/O pin or alternative functions.GPIOs can act as an interrupt source.In a multiprocess
把上述代码,放入arch/arm/boot/dts/100ask_imx6ull-14x14.dts的根节点下面。
I2C总线对应着/bus下的一条总线,这个i2c总线结构体管理着i2c设备与I2C驱动的匹配,删除等操作,I2C总线会调用i2c_device_match函数看I2C设备和I2C驱动是否匹配,如果匹配就调用i2c_device_probe函数,进而调用I2C驱动的probe函数。
i2c_apdater核心是master_xfer函数,它的实现取决于硬件,大概代码如下:
使用一句话概括I2C传输:APP通过I2C Controller与I2C Device传输数据。
一、基本概念。 I2C总线(I2C bus,Inter-IC bus)是一个双向的两线连接总线,提供集成电路之间的通信线路。I2C属于一种串行扩展技术,广泛应用于电视、录像机、音频设备。I2C的意思是“完成集成电路或者功能单元之间信息交换的规范或协议”,采用一条数据线(SDA)和一条时钟线(SCL)来完成数据的传输以及外围器件的扩展。
在虚拟的I2C_Adapter驱动程序里,只要实现了其中的master_xfer函数,这个I2C Adapter就可以使用了。 在master_xfer函数里,我们模拟一个EEPROM,思路如下:
今天我们来介绍一下AT24C02,首先呢,它是一种可以实现掉电不丢失的存储器,可用于保存单片机运行时想要永久保存的数据信息,在介绍AT24C02之前,我们先来介绍一下存储器!
把某个结构体,左右的放入链表,一一比较,匹配调用probe函数 设备链表 driver链表, 总线提供了match函数
这篇文章介绍了一种基于I2C接口的EEPROM存储器读写方法,包括地址位、数据位以及控制命令的发送。作者通过一个例子详细展示了读写EEPROM的步骤和注意事项。此外,文章还介绍了如何使用I2C接口实现EEPROM存储器的硬件电路设计和驱动程序。
在7位寻址过程中,从机地址在启动信号后的第一个字节开始传输,该字节的前7位为从机地址,第8位为读写位,其中0表示写,1表示读
I2C设备驱动是I2C框架中最接近应用层的,其上接应用层,下接I2C核心。也是驱动开发人员需要实现的代码,在此驱动中我们只需负责以下步骤(以ap3216c为例):
作者: 付汉杰 hankf@xilinx.com hankf@amd.com 测试环境: Vivado/PetaLinux 2021.2, Linux 5.10.0
读I2C数据时,要先发出设备地址,这是写操作,然后再发起读操作,涉及写、读操作。所以以读I2C数据为例讲解核心代码。
资料下载 coding无法使用浏览器打开,必须用git工具下载: git clone https://e.coding.net/weidongshan/linux/doc_and_source_for_drivers.git 视频观看 百问网驱动大全 I2C视频介绍 参考资料: I2CTools:https://mirrors.edge.kernel.org/pub/software/utils/i2c-tools/ 1. I2C硬件框架 在一个芯片(SoC)内部,有一个或多个I2C控制器 在一个I2
i2c_driver跟i2c_client匹配成功后,就调用i2c_driver.probe函数。
前言:在上文中聊了i2c-tools,主要使用命令行,本文使用代码驱动设备。本文以驱动oled展开,关于oled的详细说明,可查看一文彻底了解SSD1306驱动0.96寸OLED,在这里只聊esp32的i2c如何使用。 1、初始化 (1)配置i2c:指定i2c的引脚、模式、速率等; (2)安装i2c驱动:设置发送、接收缓冲,指定中断等; 这个代码基本是固定的,当做主机的时候都可以使用以下代码来初始化 static esp_err_t i2c_master_init(void) { int i2c_m
I2C在硬件上的接法如下所示,主控芯片引出两条线SCL,SDA线,在一条I2C总线上可以接很多I2C设备,我们还会放一个上拉电阻(放一个上拉电阻的原因以后我们再说)。
为了方便查找,我们加入了一个显示功能引脚位置的功能,运行以下命令,查看板子的40pin引脚上有几个可用i2c
RT-Thread 是一个集实时操作系统(RTOS)内核、中间件组件和开发者社区于一体的技术平台,组件完整丰富、高度可伸缩、简易开发、超低功耗、高安全性的物联网操作系统。RT-Thread 拥有良好的软件生态,支持市面上所有主流的编译工具如 GCC、Keil、IAR 等,工具链完善、友好,支持各类标准接口,如 POSIX、CMSIS、C++应用环境、Javascript 执行环境等,方便开发者移植各类应用程序。商用支持所有主流MCU架构,如 ARM Cortex-M/R/A, MIPS, X86, Xtensa, C-Sky, RISC-V,几乎支持市场上所有主流的 MCU 和 Wi-Fi 芯片。
总线代表着同类设备需要共同遵守的工作时序,不同的总线对于物理电平的要求是不一样的,对于每个比特的电平维持宽度也是不一样,而总线上传递的命令也会有自己的格式约束。如I2C总线、USB总线、PCI总线等等。以I2C总线为例,在同一组I2C总线上连接着不同的I2C设备。
前言 Linux的IIC驱动想必大家都耳熟能详,网上也有很多相关的教程。 网上的教程总结,比如: 方法问题描述Linux 3.X.X版本之后,设备树+驱动此方法是比较符合linux驱动的写法的。当对于不熟悉设备树的小伙伴,写起来比较棘手使用 i2c-tools,并通过脚本或者应用程序编写设备驱动(简单粗暴)此方法是将设备驱动丢到用户态中,对于一些的设备除了I2C通信还有一些引脚也要控制的,此方法写起来将非常痛苦直接操作i2c总线驱动。(简单粗暴)此方法是将设备驱动丢到用户态中,对于一些的设备除了I2C通信还
最近学习stm32单片机,用VL53L0X这个传感器进行开发,花了不少时间和精力,写这个博客一个是为了记录自己的学习过程另外一个是感谢网上各位网友的帮助。我一直秉持分享的精神同时取之大众馈之大众。谨用这篇博客感谢各位的帮助。
最近遇到 i2c 传输慢的问题,正常一笔 i2c 传输 52 bytes 应该在 1ms 内返回,但是偶尔出现 6 ~ 7ms 才返回,不满足要求,因此研究一下 ftrace 工具,分析 i2c 传输到底慢在哪里。怀疑:
陈拓 chentuo@ms.xab.ac.cn 2020/07/21-2020/07/29
I²C(Inter-Integrated Circuit),常读作“I方C”,它是一种多主从架构串行通信总线。在1980年由飞利浦公司设计,用于让主板、嵌入式系统或手机连接低速周边设备。如今在嵌入式领域是非常常见通信协议,常用于MPU/MCU与外部设备连接通信、数据传输。
资料下载 coding无法使用浏览器打开,必须用git工具下载: git clone https://e.coding.net/weidongshan/linux/doc_and_source_for_drivers.git 视频观看 百问网驱动大全 编写设备驱动之i2c_client 参考资料: Linux内核文档: Documentation\i2c\instantiating-devices.rst Documentation\i2c\writing-clients.rst Linux内核驱
针对音箱日常工作项目开展的前期,需要快速的适配音频子模块,方便项目的声学评估和开展,期间遇到不少的问题,其中有一些细节往往会忽略掉,然而正好是问题的所在。在此背景下,遇到问题一步一步梳理,方便快速的定位出问题所在 。
SMBus: System Management Bus,系统管理总线。 SMBus最初的目的是为智能电池、充电电池、其他微控制器之间的通信链路而定义的。 SMBus也被用来连接各种设备,包括电源相关设备,系统传感器,EEPROM通讯设备等等。 SMBus 为系统和电源管理这样的任务提供了一条控制总线,使用 SMBus 的系统,设备之间发送和接收消息都是通过 SMBus,而不是使用单独的控制线,这样可以节省设备的管脚数。 SMBus是基于I2C协议的,SMBus要求更严格,SMBus是I2C协议的子集。
内核Documentation\devicetree\bindings\interrupt-controller\interrupts.txt
UART、I2C、SPI都是常见的低速板级通信协议,目前主流的SoC都内置了这些通讯协议的控制器,同样,各种传感器、Touch控制器、指纹模块、蓝牙模块、WIFI模块也都兼容这三种通信方式的一种或几种。
单片机的IIC编程中,如果我们直接一点,只需要控制IIC硬件GPIO脚,然后根据IIC协议模拟各种电平时序实现与IIC设备的通信。但是这种编程方法,移植性较差(假如新加了一种IIC设备,同样的代码,又要重新复制一份)。这种做法完全不适应Linux的通用性的设计理念,对于Linux来讲:同样的事情我只做一遍,向外提供接口,不管你是什么IIC设备挂载那条IIC总线上,都可以用。因此,这就需要Linux在代码架构上有非常严谨的模块化设计。
调试IIC过程中,需要准备示波器或逻辑分析仪,需要通过示波器查看波形确定硬件连接是否正确,不然出现问题,软件再怎么调试,都是枉然.
里面保存I2C总线驱动相关的文件,比如i2c-omap.c、 i2c-versatile.c、 i2c-s3c2410.c等。
目录 学习目标 运行结果 内容 代码 总结 ---- 学习目标 本节介绍的是I2C实验,使用的是AT24C02来实现存储操作,这部分内容与C51的I2C的实验基本上是一模一样,而且在51中讲解的特别详细与通俗,所以本节内容不会过多介绍,介绍部分可以去看51的笔记。 运行结果 就是一个简单的存储实验,和在51上的基本一样。 内容 关于I2C实验,51的笔记讲的非常详细了,基本上是一模一样,在此就不再赘述了,我们直接来到代码部分。(十一)51
领取专属 10元无门槛券
手把手带您无忧上云