首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Tensorflow加载预训练模型和保存模型

大家好,又见面了,我是你们的朋友全栈君。 使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。...,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。...,只会保存变量的值,placeholder里面的值不会被保存 如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作: import

1.5K30

Tensorflow加载预训练模型和保存模型

使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow.../checkpoint_dir/MyModel',global_step=1000) 3 导入训练好的模型 在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。...,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。...,只会保存变量的值,placeholder里面的值不会被保存 如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作: import

3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【TensorFlow】使用迁移学习训练自己的模型

    最近在研究tensorflow的迁移学习,网上看了不少文章,奈何不是文章写得不清楚就是代码有细节不对无法运行,下面给出使用迁移学习训练自己的图像分类及预测问题全部操作和代码,希望能帮到刚入门的同学。...大家都知道TensorFlow有迁移学习模型,可以将别人训练好的模型用自己的模型上 即不修改bottleneck层之前的参数,只需要训练最后一层全连接层就可以了。...如果你的路径都没有问题,按下回车就可以训练你的模型 ?...img 可以看到训练简单的猫猫狗狗还剩很轻松,正确率100% 然后可以在cmd中使用以下命令打开tensorboard来查看你的模型,xxxx是你的路径 tensorboard--logdir=C:/xxxx...如果想测试一些其他图片,看看模型能不能成功识别可以继续往下看 模型预测 将下面代码粘贴到IDLE中并保存为image_pre.py在tensorflow文件夹中,其中你需要将里面三处的路径都修改为你的路径

    2.1K30

    Tensorflow加载预训练模型的特殊操作

    在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...本文介绍一些不常规的操作: 如何只加载部分参数? 如何从两个模型中加载不同部分参数? 当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办?...假设修改过的卷积层名称包含`conv_,示例代码如下: import tensorflow as tf def restore(sess, ckpt_path): vars = tf.trainable_variables...如果需要从两个不同的预训练模型中加载不同部分参数,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def...举个例子,例如,预训练的模型所有的参数有个前缀name_1,现在定义的网络结构中的参数以name_2作为前缀。

    2.3K271

    使用TensorFlow训练图像分类模型的指南

    转载自:51CTO技术栈原文地址:使用TensorFlow训练图像分类模型的指南众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。...下面,我将和您共同探讨计算机视觉(Computer Vision)的一种应用——图像分类,并逐步展示如何使用TensorFlow,在小型图像数据集上进行模型的训练。...通常,深度神经网络架构会提供一个输入、一个输出、两个隐藏层(Hidden Layers)和一个用于训练模型的Dropout层。...让我们将epoch(训练集中每一个样本都参与一次训练)的数量保持为50 ,以实现对模型的快速训练。epoch数值越低,越适合小而简单的数据集。接着,您需要添加隐藏层。...对于其他超参数,我将衰减步骤(decay steps)和衰减率(decay rate)分别选择为2000和0.9。而随着训练的进行,它们可以被用来降低学习率。在此,我选择Adamax作为优化器。

    1.2K01

    将训练好的Tensorflow模型部署到Web站点

    通过Google发布的tensorflowjs,我们可以将训练好的模型部署到任何一个支持静态页的web服务器上,不需要任何后台服务即可运行tensorflow,部署过程非常简单。...安装tensorflowjs python万金油安装法 pip install tensorflowjs 转换模型 1 tensorflowjs_converter --input_format=keras.../models/modelforjs 后面2个参数第1个是保存好的tf模型路径,第2个参数是输出路径,会生成一个modelforjs目录,里面包含一个model.json文件和二进制数据文件 部署到Web...服务 把生成好的modelforjs拷贝到web服务上,同时引用这个jstensorflow/tfjs/dist/tf.min.js..."> 调用模型 123 var model = await tf.loadLayersModel('modelforjs/model.json'); //加载模型var predict

    1.2K20

    为什么大模型训练需要GPU,以及适合训练大模型的GPU介绍

    文章目录 前言 1、为什么大模型训练需要GPU,而非CPU 2、现在都有哪些合适的GPU适合训练,价格如何 前言 今天偶然看到一篇关于介绍GPU的推文,我们在复现代码以及模型训练过程中,GPU的使用是必不可少的...,那么大模型训练需要的是GPU,而不是CPU呢。...1、为什么大模型训练需要GPU,而非CPU 总的来说,选择GPU而非CPU进行大模型训练的主要原因是因为GPU在并行处理能力、高吞吐量和针对机器学习任务的优化方面的优势。...这些设计特性也让GPU非常适合于训练大型机器学习模型,因为这些模型需要进行大量的数学运算,特别是在训练神经网络时。...优化的库和框架:许多深度学习框架和库,如TensorFlow、PyTorch等,都针对GPU进行了优化,以充分利用其并行处理能力。这些优化包括专门的算法和硬件加速技术,可以显著加快模型训练过程。

    3.4K11

    为什么说大模型训练很难?

    怎么能早点知道大致的结果来停掉没前途的实验? 用户说模型会胡说八道,你不修好这个问题你的模型就会被下架,怎么修?调参?改训练数据?改模型结构? 总之,挑战太多了。...第一轮:初步训练三次(这里的训练一次未必是跑完所有数据,只是启动和停止训练过程),先按照经验假定模型和训练超参数,并根据实际情况简单调整。...作者:生栋 https://www.zhihu.com/question/498271491/answer/2232480465 因为这个领域最近几年才开始热门,而之前的框架pytorch、tensorflow...等是早就出现的,当时并没有针对大模型的分布式训练的需求场景做深入的抽象设计和优化。...我半年前从云平台换到 SysML 方向,就是因为喜欢这个领域:涉及的东西很多,而且足够难,能够让我的技术水平再提高一波。

    67520

    转载|使用PaddleFluid和TensorFlow训练RNN语言模型

    注意:在运行模型训练之前,请首先进入 data 文件夹,在终端运行 sh download.sh 下载训练数据。...PTB数据集介绍 至此,介绍完 RNN LM 模型的原理和基本结构,下面准备开始分别使用 PaddleFluid 和 TensorFlow 来构建我们的 训练任务。...进入训练的双层循环(外层在 epoch 上循环,内层在 mini-batch 上循环),直到训练结束。 TensorFlow 1. 调用 TensorFlow API 描述神经网络模型。...TensorFlow TensorFlow 中使用占位符 placeholder 接收 训练数据,可以认为其概念等价于 PaddleFluid 中的 data layer。...运行训练 运行训练任务对两个平台都是常规流程,可以参考上文在程序结构一节介绍的流程,以及代码部分:PaddleFluid vs. TensorFlow,这里不再赘述。

    71730

    使用TensorFlow训练循环神经网络语言模型

    读了将近一个下午的TensorFlow Recurrent Neural Network教程,翻看其在PTB上的实现,感觉晦涩难懂,因此参考了部分代码,自己写了一个简化版的Language Model...代码地址:Github 转载请注明出处:Gaussic 语言模型 Language Model,即语言模型,其主要思想是,在知道前一部分的词的情况下,推断出下一个最有可能出现的词。...并且使用语言模型来生成新的文本。 在本文中,我们更加关注的是,如何使用RNN来推测下一个词。 数据准备 TensorFlow的官方文档使用的是Mikolov准备好的PTB数据集。...,每个批次的训练集维度为[64, 20]。...sess.close() 需要经过多次的训练才能得到一个较为合理的结果。

    87330

    转载|使用PaddleFluid和TensorFlow训练序列标注模型

    上一篇通过转载|使用PaddleFluid和TensorFlow训练RNN语言模型大家了解了: 在 PaddleFluid 和 TensorFlow 平台下如何组织序列输入数据; 如何使用循环神经网络单元...序列标注模型结构概览 我们要训练的序列标注模型,接受:一个文本序列作为输入,另一个与输入文本序列等长的标记序列作为学习的目标。...进入训练的双层循环(外层在 epoch 上循环,内层在 mini-batch 上循环),直到训练结束。 TensorFlow 1. 调用 TensorFlow API 描述神经网络模型。...关于什么是 LoD Tensor请参考上一篇使用 PaddleFluid 和 TensorFlow 训练 RNN 语言模型中的介绍,这一篇不再赘述。...模型中核心模块:LSTM 单元在两个平台下的差异及注意事项请参考上一篇:使用 PaddleFluid 和 TensorFlow 训练 RNN 语言模型,这里不再赘述。

    64630

    tensorflow 2.0+ 预训练BERT模型的文本分类

    基于transformers的语言模型在许多不同的自然语言处理(NLP)基准任务测试上都取得了很大进展。迁移学习与大规模的transformers语言模型训练的结合正在成为现代NLP的一个标准。...然后,我们将演示预训练BERT模型在文本分类任务的微调过程,这里运用的是TensorFlow 2.0+的 Keras API。 文本分类–问题及公式 一般来说, 分类是确定新样本的类别问题。...为什么选择transformers? 在这篇文章中,我们不会详细讨论transformers架构。然而了解 NLP 中的一些难点还是很有用的。...微调(Fine-tuning) 一旦我们自己预训练了模型,或者加载了已预训练过的模型(例如BERT-based-uncased、BERT-based-chinese),我们就可以开始对下游任务(如问题解答或文本分类...所以保存预训练的模型,然后微调一个特定的数据集非常有用。与预训练不同,微调不需要太多的计算能力,即使在单个 GPU 上,也可以在几个小时内完成微调过程。

    2.5K40

    我的PyTorch模型比内存还大,怎么训练呀?

    随着深度学习的飞速发展,模型越来越臃肿先进,运行SOTA模型的主要困难之一就是怎么把它塞到 GPU 上,毕竟,你无法训练一个设备装不下的模型。...在本文的最后,我们将看到一个示例基准测试,它显示了梯度检查点减少了模型 60% 的内存开销(以增加 25% 的训练时间为代价)。.../ResidentMario/9c3a90504d1a027aab926fd65ae08139 >>> 基准测试 作为一个快速的基准测试,我在 tweet-sentiment-extraction 上启用了模型检查点...transformers.BertConfig.from_dict(cfg) self.bert = transformers.BertModel.from_pretrained( "bert-base-uncased", config=cfg ) 我对这个模型进行了四次训练...所有运行的批次大小为 64。以下是结果: ? 第一行是在模型检查点关闭的情况下进行的训练,第二行是在模型检查点开启的情况下进行的训练。

    2K41

    基于tensorflow 1.x 的bert系列预训练模型工具

    tfbert 基于tensorflow 1.x 的bert系列预训练模型工具 支持多GPU训练,支持梯度累积,支持pb模型导出,自动剔除adam参数 采用dataset 和 string handle...配合,可以灵活训练、验证、测试,在训练阶段也可以使用验证集测试模型,并根据验证结果保存参数。...内置代码示例数据集百度网盘提取码:rhxk 支持模型 bert、electra、albert、nezha、wobert、ChineseBert(GlyceBert) requirements tensorflow...==1.x tqdm jieba 目前本项目都是在tensorflow 1.x下实现并测试的,最好使用1.14及以上版本,因为内部tf导包都是用的 import tensorflow.compat.v1...最大输入长度32,批次大小32,训练3个epoch, 测试环境为tensorflow1.14,GPU是2080ti。

    1K30

    将 TensorFlow 训练好的模型迁移到 Android APP上(TensorFlowLite)

    Android APP上,调研了下,谷歌发布了TensorFlow Lite可以把TensorFlow训练好的模型迁移到Android APP上,百度也发布了移动端深度学习框架mobile-deep-learning...这篇博客只介绍如何把TensorFlow训练好的模型迁移到Android Studio上进行APP的开发。...2.模型训练注意事项 第一步,首先在pc端训练模型的时候要模型保存为.pb模型,在保存的时候有一点非常非常重要,就是你待会再Android studio是使用这个模型用到哪个参数,那么你在保存pb模型的时候就把给哪个参数一个名字...(如果你已经训练好了模型,并且没有给参数名字,且你不想再训练模型了,那么你可以尝试下面的方法去找到你需要使用的变量的默认名字,见下面的代码): #输出保存的模型中参数名字及对应的值with tf.gfile.GFile...放一段我调用模型的代码,以供大家参考: public ArrayList predict(Bitmap bitmap) { ArrayList list = new

    2.1K30
    领券