首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么字形中的中间性中心性不同?

字形中的中间性中心性不同是因为不同的字形结构和字母形状导致的。中间性是指字形中心点相对于整个字形的位置,而中心性是指字形中心点相对于字形内部元素的位置。

在字形中,中间性和中心性的差异主要体现在以下几个方面:

  1. 字形结构:不同字形的结构决定了中间性和中心性的差异。有些字形的结构比较对称,中间性和中心性较为接近,例如"O"、"S"等字母。而有些字形的结构不对称,中间性和中心性差异较大,例如"M"、"W"等字母。
  2. 字母形状:字母的形状也会影响中间性和中心性的差异。一些字母形状比较圆润,中间性和中心性较为接近,例如"O"、"C"等字母。而一些字母形状比较尖锐或复杂,中间性和中心性差异较大,例如"M"、"W"等字母。
  3. 字形设计:字形设计的目的和风格也会影响中间性和中心性的差异。一些字形设计追求中间性和中心性的平衡,使得字形整体稳定和谐,例如"O"、"S"等字母。而一些字形设计追求中间性和中心性的对比,使得字形具有动感和张力,例如"M"、"W"等字母。

总的来说,字形中的中间性和中心性不同是由字形结构、字母形状和字形设计等因素综合影响的结果。不同的字形具有不同的中间性和中心性特点,这也是字体设计中的一个重要考虑因素。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

关系网络理论︱细讲中介中心性(Betweeness Centrality)

中介中心性(Betweeness Centrality),又叫中间中心性,中间性,居间中心性等等。以下是学者们对中介中心性的解释。 中介中心性主要是由美国社会学家林顿·弗里曼(Freeman,1979)教授提出来的一个概念,它测量的是一个点在多大程度上位于图中其他“点对”的“中间”。他认为,如果一个行动者处于多对行动者之间,那么他的度数一般较低,这个相对来说度数比较低的点可能起到重要的“中介”作用,因而处于网络的中心,根据这个思路就可以测量点的中间中心性。[1] 居间中心性建立在以下假设基础上,即一个人如果可把持传播通道的话,则他可能会获得更大的权力。在下图中,节点D很明显处于一个权力位置——节点A、B、C与E、F、G之间所有的信息流通都要通过D。这种传播瓶颈的位置可能是危险的,无论如何——它也可被解释为相当大的压力。居间中心性的另一个重要作用就是它能够分辨出谁是“跨界者”(boundary spanners)——那些在两个或多个团体中扮演着不可或缺的桥梁作用的个体。比如:一个在计算机科学学术世界和音乐世界的跨界者,而我则是在计算机科学方面(获得了博士学位)和长期从事爵士和摇滚伴奏领域的跨界者。[2] 点的中心性是一个用以量化点在网络中地位重要性的图论概念。中间中心性是常用来进行中心性测度的指标,它是指网络中经过某点并连接这两点的最短路径占这两点之间的最短路径线总数之比。

01
  • 社交网络的度中心性与协调的神经活动有关

    趋同处理可能是促进社会联系的一个因素。我们使用神经成像和网络分析来调查大一学生在观看自然的视听刺激(即视频)时社交网络地位(通过度中心性测量)和神经相似性之间的联系。参与社交网络研究的学生有119名;其中63人参与了神经成像研究。我们发现,在与高级解读和社会认知相关的脑区(例如,默认模式网络),高度中心性的个体彼此间以及与同龄人之间有相似的神经反应,而低度中心性的个体表现出更多样化的反应。被试自我报告对刺激的享受程度和感兴趣程度遵循类似的模式,但这些数据并没有改变我们的主要结果。这些发现表明,对外部刺激的神经处理过程在高度中心性的个体中是相似的,但在低度中心性的个体中是特殊的。本文发表在Nature Communications杂志。

    02

    人脑hub枢纽和功能连接的时间动态性

    神经成像技术观察到大脑网络连接的枢纽hub,普遍认为枢纽对建立和维持一个功能平台至关重要,在这个平台上可以发生有认知意义和高效的神经元交流。然而,枢纽是静态的(即大脑区域始终是枢纽),还是这些属性会随时间变化(即大脑区域的枢纽波动),我们知之甚少。为了解决这个问题,我们引入了两个新的方法概念,脑连接流和节点惩罚最短路径,然后应用于时变功能连接fMRI BOLD数据。我们表明,激活的枢纽以一种非平凡的方式随时间而变化,枢纽的活动依赖于研究的时间尺度。激活的枢纽数量中较慢的波动超过了预期的程度,这主要是在皮层下结构检测到的。此外,我们观察到枢纽活动的快速波动主要存在于默认模式网络中,这表明大脑连接中的动态事件。我们的结果表明,连接枢纽的时间行为是一个多层次和复杂的问题,必须考虑到特定方法对时变连接性的时间敏感性的特性。我们讨论的结果与正在进行的讨论有关,即静息大脑中存在离散和稳定状态,以及网络枢纽在为神经元跨时间通信提供支架方面的作用。

    00

    Nucleic Acids Res. | scHumanNet:用于研究疾病基因细胞类型特异性的单细胞网络分析平台

    本文介绍由哈佛医学院的Martin Hemberg和韩国延世大学生命科学与生物技术学院生物技术系的Insuk Lee共同通讯发表在Nucleic Acids Research的研究成果:单细胞生物学面临的一个主要挑战是识别细胞类型特异性基因功能,这可能会大大提高精准医学的水平。基因的差异表达分析是一种流行但不充分的研究方法,需要补充与细胞类型相关的功能。因此,作者提出了单细胞网络分析平台scHumanNet,用于解决人类不同基因功能的细胞异质性。scHumanNet是基于HumanNet参考相互作用组构建细胞类型特异性基因网络(CGN), 它在单细胞转录组数据上构建的CGN比其他方法显示出更高的细胞环境功能相关性。此外,基于跨细胞类型网络紧致性的基因信号的细胞反褶积揭示了与T细胞相关的乳腺癌预后标志物。scHumanNet还可以利用CGN的中心性对与特定细胞类型相关的基因进行优先排序,并确定CGN在疾病和健康状况之间的差异中心。作者通过揭示乳腺癌预后基因GITR的T细胞特异性功能效应,以及抑制神经元特异性自闭症谱系障碍基因的功能缺陷,证明了scHumanNet的有效性。

    02

    皮质-皮质网络的多尺度交流

    大脑网络中的信号在多个拓扑尺度上展开。区域可以通过局部回路交换信息,包括直接邻居和具有相似功能的区域,或者通过全局回路交换信息,包括具有不同功能的远邻居。在这里,我们研究了皮质-皮质网络的组织如何通过参数化调整信号在白质连接体上传输的范围来调节局部和全局通信。我们发现,大脑区域在偏好的沟通尺度上是不同的。通过研究大脑区域在多个尺度上与邻居交流的倾向,我们自然地揭示了它们的功能多样性:单模态区表现出对局部交流的偏好,而多模态区表现出对全球交流的偏好。我们表明,这些偏好表现为区域和尺度特定的结构-功能耦合。即,单模态区域的功能连接出现在小尺度回路的单突触通信中,而跨模态区域的功能连接出现在大尺度回路的多突触通信中。总之,目前的研究结果表明,交流偏好在大脑皮层之间是高度异质性的,形成了结构-功能耦合的区域差异。

    02

    Academic social networks: Modeling, analysis, mining and applications 2019翻译

    在快速增长的学术大数据背景下,社交网络技术最近引起了学术界和工业界的广泛关注。学术社会网络的概念正是在学术大数据的背景下产生的,指的是由学术实体及其关系形成的复杂的学术网络。有大量的学术大数据处理方法来分析学术社交网络丰富的结构类型和相关信息。现在各种学术数据都很容易获取,这让我们更容易分析和研究学术社交网络。本研究调查了学术社交网络的背景、现状和趋势。我们首先阐述了学术社会网络的概念和相关研究背景。其次,基于节点类型和时效性分析模型。第三,我们回顾分析方法,包括相关的指标,网络属性,和可用的学术分析工具。此外,我们还梳理了一些学术社交网络的关键挖掘技术。最后,我们从行动者、关系和网络三个层面系统地回顾了该领域具有代表性的研究任务。此外,还介绍了一些学术社交网站。本调查总结了当前的挑战和未解决的问题。

    03

    Cerebral Cortex:疼痛热刺激引起的脑功能网络分离与整合

    目前的研究旨在确定热痛期间大脑网络整合/分离的变化,使用高时间分辨率的网络连接事件优化方法。参与者(n = 33)主动判断施加于前臂掌侧的热刺激是否疼痛,然后在每次试验后评价温暖/疼痛强度。我们表明,试验中整合/分离的时间演化与疼痛的主观评级相关。具体来说,大脑在处理疼痛刺激时从隔离状态转变为整合状态。在所有的网络中,与主观疼痛评分的关联发生在不同的时间点。然而,当在较低的时间分辨率下测量时变功能连接时,评分和整合/分离之间的关联程度消失了。此外,与疼痛相关的整合增强在一定程度上可以通过网络之间连接的相对增加来解释。我们的研究结果强调了在单一时间点尺度上研究疼痛和大脑网络连接之间关系的重要性,因为通常使用的连接数据的时间聚合可能导致网络连接的细尺度变化可能被忽视。整合/分离之间的相互作用反映了大脑网络之间信息处理需求的变化,这种适应既发生在认知任务中,也发生在痛感处理中。

    03

    ucinet网络分析实例(网络分析app)

    UCINET为菜单驱动的Windows程序,可能是最知名和最经常被使用的处理社会网络数据和其他相似性数据的综合性分析程序。与UCINET捆绑在一起的还有Pajek、Mage和NetDraw等三个软件。UCINET能够处理的原始数据为矩阵格式,提供了大量数据管理和转化工具。该程序本身不包含 网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage和KrackPlot等软件作图。UCINET包含大量包括探测凝聚子群(cliques, clans, plexes)和区域(components, cores)、中心性分析(centrality)、个人网络分析和结构洞分析在内的网络分析程序。UCINET还包含为数众多的基于过程的分析程序,如聚类分析、多维标度、二模标度(奇异值分解、因子分析和对应分析)、角色和地位分析(结构、角色和正则对等性)和拟合中心-边缘模型。此外,UCINET提供了从简单统计到拟合p1模型在内的多种统计程序。

    02

    南开提出 Range-View | 激光雷达技术新进展在自动驾驶等多任务中的应用

    激光雷达测距传感器在安全关键型应用中(例如,自动驾驶中的目标检测和全景分割)发挥着至关重要的作用,它可以在不考虑光照条件的情况下提供精确的3D环境测量。然而,激光雷达点云本质上是非均匀的、无序的且稀疏的,这禁止了高度优化算子(如卷积)的直接应用。解决此问题的一种方法是在点云中首先建立一个邻域结构,通过昂贵的半径搜索或最近邻搜索,然后在局部邻域中应用性能卷积算子[5, 23, 27, 36]。另一种方法是通过对输入点进行量化创建规则的 Voxel 栅格[8, 35, 41, 42, 43]或 Voxel 柱[15, 16, 26, 39, 43],这不可避免地会导致信息丢失。尽管这些算法取得了巨大成功,但利用点集和 Voxel 栅格的算法通常需要繁重的计算,这给在实时自主系统中扩展它们带来了挑战。相比之下,距离图像以无损的方式将3D数据组织成结构化的2D视觉表示。因此,距离图像无疑是所有激光雷达点云数据表示中最为紧凑和高效的。

    01

    Cytoscape插件1:Centiscape

    Cytoscape的插件或多或少都有一些弊端,Centiscape是目前(文章时间2009)唯一一个可以一次计算多个中心值的插件(相对于network analysis等).它可以根据拓扑和生物学属性寻找最显著差异的基因。它只适合于无向网络,可以计算的参数有(average distance,diameter直径,degree度数,stress压力,betweenness中介性,radiality放射性,closeness紧密度(接近中心性),centroid value质心值,eccentricity离心值。插件的帮助文件有以上的定义,描述,生物学意义和计算的复杂性。每个参数的max,min,mean值都有提供。还可以可视化。右边的滑动块可以调整作者的值(默认是mean)。如果必要的话,可以把其中几个参数给deactive掉,也就是不勾选acitive复选框。用户可以选择其中几个参数more/equal而另外的选择less/equal,也可以假如AND-OR 参数。这些可以马上知道结果例如“哪些节点有高中介性值和高stress同时低离心值?”要注意的是,threshold也可以手动设置。一旦根据用户的选定设置,相应的子图就可以提取显示。两类图的输出可以被支持,根据centrality 画图,根据node画图,以上两种都支持其他工具所不支持的分析。 The plot by node 可以提供任何一个node 的所有计算的centiscape值,并以bar 图展示。Mean,max,min以不同颜色显示。图中的所有值都是标准化的,当用鼠标指向某一个时候显示的是真实值。 The plot by centrality 根据中心性画图。可以有五种方式画图 1 centrality vs centrality 2.centrality vs experimental data 3.experimental data vs experimental data 4.centrality vs itself 5.experimental vs itself 仔细看怎么用(plot by centrality可以发掘根据特殊的拓扑或实验特性聚成一类的群。并可以提取子网络进一步分析。拓扑特性和实验数据的结合可以用来对子网络的功能进行更多的有意义的预测或实验证实。 文章作者然后用一个例子来具体说明 整个网络的拓扑性质的总体会首先看到诸如min,max,mean等。例如,degree的平均值是13.5,平均距离是3显示这是一个高度连接的网络,也就是其中蛋白发生了强烈的相互作用。为了找到最高分蛋白的找出,我们可以应用“plot by centrality”。 画degree over degree,显示,分布是不均匀的,大多数nodes有低degree,很少的有高degree的。这和已知的生物网络的无尺度架构一致。下面这个是我的ucco的值,结果差不多,低degree的多余高degree的。

    03

    Cytoscape插件2:CytoHubba

    CytoHubba:发现复杂网络的关键目标和子网络 网络对呈现包括PPI,基因调控,细胞路径和信号转导等多种类型生物数据非常有用。我们//+重要性,并且这也能帮助我们发现网络中的中心元素。 cytoHubba根据nodes在网络中的属性进行排名。它提供了11中拓扑分析方法,包括,Degrre度,Edge Percolated component边过滤成分,Maximum neighborhood component,Density of Maximum Neighborhood Component,Maximal Clique Centrality and six centralities(Botteleneck,EcCentricity,Closeness,Radiality,Betweenness, Stress)以上这些基于最短路径,MCC是新提出的方法,在酵母PPI网络中对关键蛋白的预测有更好的表现。比如依据给定的重要性概念对网络中心性对节点进行排名可以发现重要信息。 研究发现,一个蛋白的degree和他的基因的重要性直接相关,换句话说,具有高degree的蛋白更倾向于是关键蛋白。 已经有几个插件可以对网络数据进行节点排名,比如NetworkAnalyzer和CentiScaPe,他们可以计算有向或无向网络的拓扑参数。这些插件比其他常用的插件提供了更多的中心性测定指标,但是一些其他重要的特性和最近发展的方法他们并未包括进去。不同的方法聚焦不同的拓扑特点或者,相似的特征有着不同的计分策略。为了让生物工作者对网络特点的利用更加辩解,我们编写了cytoHubba插件以执行我们最新发展的算法和几个流行的算法。 加强的node 获取功能控制面板可以帮助研究者搜索和探索网络,并且可以提取感兴趣的子网络。 使用方法 CytoHubba界面提供了一个简单的交互界面有11个得分方法的分析界面。 首先,所有11中方法在每个node中的得分都会被赋予,当然前提是加载了PPI网络,并执行了“compute hubba result”功能。

    01
    领券