因此,大家常会使用开源的预训练模型,然后根据下游任务数据来fine tuning。其中最出名的就是哈工大讯飞实验室推出的一系列中文PTMs[1],他们是用维基百科的中文语料来做的预训练。
前段时间读完大刘的流浪地球,本来想着写点东西... 结果“懒癌”了,今天就先弄个词云凑合吧( ╯□╰ )。
互联网的普及给人们带来了很多方便,无论是遇到哪个方面的问题,可以直接通过搜索的方式,找到想要的答案,而且这种资源搜索的方式,已经成为了大家的习惯,不用再到图书馆翻阅大量的资料,只要在电脑上、手机上通过网络就能得到全面的信息,下面就来看看资源搜索平台的相关介绍吧。
本“新词发现”模块基于信息熵和互信息两种算法,可以在无语料的情况下提取一段长文本中的词语,并支持过滤掉系统中已存在的“旧词”,得到新词列表。
前几天遇到了一个小问题,在做资料的时候,遇到了几个特殊省位,需要挨个的去做资料,单独写了对应的代码。但是对于其他通用省位来说,整体的数据还是不变的,那么就需要对原始数据进行过滤。
当前主流测序平台的数据存储格式无外乎两种,FASTQ(Illumina, MGI),BAM(Life Ion Torrent,PacBio),对于 BAM 文件,通常也需要先转换成 FASTQ 文件后再进行质控处理。
前几天对一个系统的关键词抽取做了简单的优化,实现方式非常简单,就是使用结巴工具。例如下面一段话(截取实际文本中的一段):
在 Redis 的主从架构中,由于主从模式是读写分离的,如果主节点(master)挂了,那么将没有主节点来服务客户端的写操作请求,也没有主节点给从节点(slave)进行数据同步了。
然后取出ExtractedBodyText的那一列,对每一行email进行噪声过滤,并返回一个对象:
#调入分词的库 library("rJava") library("Rwordseg") #调入绘制词云的库 library("RColorBrewer") library("wordcloud") #读入数据(特别注意,read.csv竟然可以读取txt的文本) myfile<-read.csv(file.choose(),header=FALSE) #预处理,这步可以将读入的文本转换为可以分词的字符,没有这步不能分词 myfile.res <- myfile[myfile!=" "] #分词,并将分词结果转换为向量 myfile.words <- unlist(lapply(X = myfile.res,FUN = segmentCN)) #剔除URL等各种不需要的字符,还需要删除什么特殊的字符可以依样画葫芦在下面增加gsub的语句 myfile.words <- gsub(pattern="http:[a-zA-Z\\/\\.0-9]+","",myfile.words) myfile.words <- gsub("\n","",myfile.words) myfile.words <- gsub(" ","",myfile.words) #去掉停用词 data_stw=read.table(file=file.choose(),colClasses="character") stopwords_CN=c(NULL) for(i in 1:dim(data_stw)[1]){ stopwords_CN=c(stopwords_CN,data_stw[i,1]) } for(j in 1:length(stopwords_CN)){ myfile.words <- subset(myfile.words,myfile.words!=stopwords_CN[j]) } #过滤掉1个字的词 myfile.words <- subset(myfile.words, nchar(as.character(myfile.words))>1) #统计词频 myfile.freq <- table(unlist(myfile.words)) myfile.freq <- rev(sort(myfile.freq)) #myfile.freq <- data.frame(word=names(myfile.freq),freq=myfile.freq); #按词频过滤词,过滤掉只出现过一次的词,这里可以根据需要调整过滤的词频数 #特别提示:此处注意myfile.freq$Freq大小写 myfile.freq2=subset(myfile.freq, myfile.freq$Freq>=10) #绘制词云 #设置一个颜色系: mycolors <- brewer.pal(8,"Dark2") #设置字体 windowsFonts(myFont=windowsFont("微软雅黑")) #画图 wordcloud(myfile.freq2$word,myfile.freq2$Freq,min.freq=10,max.words=Inf,random.order=FALSE, random.color=FALSE,colors=mycolors,family="myFont")
在网站建设这个大工程中,建设者必须完成各种各样的细节,才能使一个网站建成,其中就包括设置二级标题。之所以设置二级标题是一个必要流程,是由于其标题内容是网站标题的延伸。当网站主页的标题内容不够详细时,可以通过设置二级标题的方法,更详尽地了解该网页。那么在网站建设中怎么设置二级标题?
昨天,Stability AI带着最新款Stable Diffusion2.1版本来了!
地址 | https://zhuanlan.zhihu.com/p/111945052
前一篇 Identity Server 4 - Hybrid Flow - MVC客户端身份验证: https://www.cnblogs.com/cgzl/p/9253667.html
之前我们已经学习了如何使用wordcloud制作英文和中文词云,今天我们接着讲解,在实际制作词云中,有很多词是没有展示出的意义的,例如我,他等主语,那如何不显示这些词了,这就涉及到停用词。
上面代码表示查询 t 表中的所有信息,是 Sql 查询中最基础,最简单的一行代码,你可以把它理解成是其他编程语言中的Hello World。
搜索,是互联网的入口,每个人都离不开搜索,更何况程序员?程序员最离不开的有两样东西,一个是 GitHub ,一个是搜索引擎。离开这两样东西,我相信大部分程序员都不会编程了。所以,一个好的程序员利用好的
识别图像中的感兴趣区域并用边界框和类标签对其进行标记是计算机视觉中的一项关键任务,即目标检测。这项任务有许多应用,并且随着深度学习的发展得到了显著改进。在过去的几十年里,已经开发了几种特殊的一阶段和两阶段目标检测模型。R-CNN家族是最著名的两阶段目标检测器,包括Fast R-CNN和Faster R-CNN。
支持linux正则表达式的工具有:grep:实现查找,sed,awk:都是流式编辑器,可以实现查找和替换,并且把替换的文本输出到屏幕上。
本文将和大家介绍 C# 语言设计里面,我认为比较坑的一个语法。通过 is var 的写法,会让开发者误以为 null 是不被包含的,然而事实是在这里的 var 是被赋予含义的,将被允许 null 通过判断逻辑,于是就会让开发者收到了奇怪的空异常
作者:perryprli 腾讯WXG工程师 |导语 iFeedback智能分类系统,提供了基于BERT模型分类和基于规则分类两种模式,通过对海量用户反馈进行快速自动化分类/打标签,提高了问题跟进和反馈分析处理的效率。 1 背景 iFeedback用户反馈平台目前接入了公司各BG应用300+个,日均反馈量1000万+,总反馈量70亿+。海量反馈内容多样,很多业务场景都需要对反馈进行分类处理。然而,人工分类效率低下,需要耗费大量的人力和时间。因此,我们提供了反馈智能分类功能,用户可以采用基于BERT模型或
一、grep命令介绍 命令格式:grep [-cinvABC] ‘word’ filename,常用选项如下: -c:表示打印符合要求的行数。 -i:表示忽略大小写。 -n:表示输出符合要求的行及其行
在今天的最后,我们再来学习一下,与 map 一样常用的算子:filter。filter,顾名思义,这个算子的作用,是对 RDD 进行过滤。就像是 map 算子依赖其映射函数一样,filter 算子也需要借助一个判定函数 f,才能实现对 RDD 的过滤转换。所谓判定函数,它指的是类型为(RDD 元素类型) => (Boolean)的函数。可以看到,判定函数 f 的形参类型,必须与 RDD 的元素类型保持一致,而 f 的返回结果,只能是 True 或者 False。在任何一个 RDD 之上调用 filter(f),其作用是保留 RDD 中满足 f(也就是 f 返回 True)的数据元素,而过滤掉不满足 f(也就是 f 返回 False)的数据元素。老规矩,我们还是结合示例来讲解 filter 算子与判定函数 f。在上面 flatMap 例子的最后,我们得到了元素为相邻词汇对的 wordPairRDD,它包含的是像“Spark-is”、“is-cool”这样的字符串。为了仅保留有意义的词对元素,我们希望结合标点符号列表,对 wordPairRDD 进行过滤。例如,我们希望过滤掉像“Spark-&”、“|-data”这样的词对。掌握了 filter 算子的用法之后,要实现这样的过滤逻辑,我相信你很快就能写出如下的代码实现:
场景描述:Flink在处理实时数据时,假如其中一条数据是脏数据,例如格式错误,字段缺少等会报错,这时候该怎么处理呢?
这里写图片描述 如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。分母之所以要加1,是为了避免分母为0(即所有文档都不包含该词)。log表示对得到的值取对数。
今天有一个需求,有一些学生成绩的数据,里面包含一些重复信息,需要从数组对象中过滤掉重复的数据。
假设现在有一篇很长的文章,要从中提取出它的关键字,完全不人工干预,那么怎么做到呢?又有如如何判断两篇文章的相似性的这类问题,这是在数据挖掘,信息检索中经常遇到的问题,然而TF-IDF算法就可以解决。这两天因为要用到这个算法,就先学习了解一下。
很多老程序员的常识性问题,往往是难倒新人的最后一根稻草。因为这类简单基础的问题,却往往连最起码的教程资料都查不到,因为老程序员懒得写也不敢写,怕被骂太水皮毛。
Spring Security 使用标准的 Servlet 过滤器(Filter) 并与 Servlet 容器集成。 这个意味着 Spring Security 可以在任何运行运行在 Servlet 容器(Servlet Container)中的应用上使用。 更具体地说,你可以不使用 Spring,而是基于 Servlet 的应用程序中使用 Spring Security。
设计索引的Mapping阶段,要根据业务用途确定是否需要分词,如果不需要分词,建议设置keyword类型;需要分词,设置为text类型并指定分词器。
最近我在帮一个数据科学家同事工程化一个基于深度学习模型的搜索系统。他们的项目是关于在文档嵌入应用深度学习模型,然后使用嵌入向量到我们的搜索系统中来查找相似文档。
* 中文分词常用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、Rwordseg分词包:引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是准确度还是运行效率都超过了rmmseg4j。 * 环境准备 (Windows或Linux版本都行): R下载:http://mirrors.us
缓存雪崩、穿透以及击穿,作为老生常谈的问题,也是面试八股文中经常被提及的话题。因为目前的互联网系统没有几个不需要用缓存的。然而,对于缓存的这三个问题,很多人只是单纯的背过答案(比如布隆过滤器、分布式锁等),却少有人能够清楚地理解其思路。本文旨在深入浅出地探讨和分析这三大缓存问题。强调的是,真正有价值的不仅是答案本身,更是解答背后的思考和推导过程。如果能够理解这些问题的根本原因,才能更好地应对类似的挑战。
单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、Rwordseg分词包:引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是准确度还是运行效率都超过了rmmseg4j。
作者:赵亮,NLPer;昆仑万维 · 预训练。 原文:https://zhuanlan.zhihu.com/p/641013454 整理: 青稞AI
作为一名数据科学家,文本数据提出了一个独特的挑战:虽然金融、年龄和温度数据可以立即被注入线性回归,但词汇和语言本身对统计模型毫无意义。
敏感词过滤是一种处理网络内容的技术,可以检测和过滤出网络中的敏感词汇。它通过给定的关键字或字符串,判断网络内容是否包含某些敏感信息,从而防止违反法律法规的信息流通。
TF-IDF与余弦相似性应用之自动提取关键词 引言 这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题。有一篇很长的文章,要用计算机提取它的关键词(Automatic Keyphrase ext
摘自: http://www.ruanyifeng.com/blog/2013/03/tf-idf.html
这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题。 有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才
最近实习期间在做一个对新闻文本情感分析的项目。在此,用京东的商品评论练手,从数据采集到模型实现完整地写一遍,以备未来回顾所需。事实上,我采用的方法并不困难,甚至有点naive,所以权且作为练手吧。 本文代码在公众号 datadw 里 回复 京东 即可获取。 数据采集 在这里为了避免人工标注的麻烦,使用的是京东iPad的用户评论 https://item.jd.com/4675696.html#none 事实上,NLP情感分析中最花时间的就是人工标注。 仔细查看调试台可以很容易地发现商品的评论信息都是用
李元上,携程机票研发部高级数据分析师,擅长结合业务经验设计模型方案。目前负责携程值机选座算法设计、机票客服会话机器人的模型开发工作,关注新技术在项目中的应用价值。
目录: 一、Fast Nearest Neighbours 二、Elasticsearch 插件 三、集成工作 四、结论
前几天在有个粉丝问了个问题,大概意思是这样的:基于Python代码,要求输出word文档中的关键词和词频,并且将关键词的词性也标注出来,最终输出一个Excel文件,一共3列,列名分别是关键词、词频和词性。
领取专属 10元无门槛券
手把手带您无忧上云