堆:有个步骤,建堆 和调整 建堆:Heap Building 建堆的时间复杂度就是O(n)。 up_heapify() ?...插入删除元素的时间复杂度也为O(log n)。 后记:链表基本操作 删除和删除,但是堆不一样,你遗忘记地方 建堆,然后基本操作删除和删除,这个之前根本没想道过建堆这个步骤。...时间复杂度: (3)堆的插入、删除元素的时间复杂度都是O(log n);https://stackoverflow.com/questions/9755721/how-can-building-a-heap-be-on-time-complexity...(4)建堆的时间复杂度是O(n); (5)堆排序的时间复杂度是O(nlog n); T(Heap Sort) = T(build Heap) + (N-1)*T(down_heapify)...= O(N) + (N-1)*O(logN) = O(N) + O(NlogN) = O(NlogN)
1、时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度。O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 2、时间复杂度为O(1)。...哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话) 3、时间复杂度为O(n)。 就代表数据量增大几倍,耗时也增大几倍。 比如常见的遍历算法。...再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。 比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。...4、时间复杂度为O(logn)。 当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。
如果单纯以时间来衡量时间复杂度不是很准确,因为相同算法在不同环境或者不同数据下运行时间是不一样的。所以,时间复杂度一般用大O符号表示法。...(a + b);//执行1次 比如这样的代码,每一句都是执行一次,加起来是三次,套用规则1,这段代码时间复杂度为O(1)。...,所以时间复杂度是O(n)。...而时间复杂度也是能比较的,单以这几个而言: O(1)O(logn)O(n)O(n²)O(n³) 一个算法执行所消耗的时间理论上是不能算出来的,我们可以在程序中测试获得。...分享时间复杂度这个概念只是想让大家了解一下我们写的一些代码执行效率是可以比较的,时间复杂度也并不能单纯的以上面单个来看,经常会组合夹杂着出现。 (完)
在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度。这里进行归纳一下它们代表的含义:这是算法的时空复杂度的表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度。 O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。...比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。 再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。...再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。 O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。
最简单的LRU实现,底层存储采用链表结构,时间复杂度为O(n) 代码如下: package com.jfp; /** * @author jiafupeng * @desc * @create
由于固定长度的hash数组,所以空间复杂度与待排序数组数据规模n没有关系,也就是说空间复杂度为O(1)。...hash[MAXN]; template void Sort(T arr[],int n){ fill(hash,hash+MAXN,false); //时间复杂度为O(...n) for(int i=0;in;++i){ hash[arr[i]] = true;//标记arr[i]出现过 } //时间复杂度为O(MAXN) int k=0; for(int...i=0;i<MAXN;++i){ if(hash[i] == true){ arr[k++] = i; } } 总的时间复杂度为O(n+MAXN),即O(n) } void show...2.对于一个几乎有序的待排序数组数组,其时间复杂任然为O(n)。
题目:某公司有几万名员工,请完成一个时间复杂度为O(n)的算法对该公司员工的年龄作排序,可使用O(1)的辅助空间。 题目特别强调是对一个公司的员工的年龄作排序。...想明白了这种思路,我们就可以写出如下代码: void SortAges(int ages[], int length) { if(ages == NULL || length <= 0)...timesOfAge[i]; ++ j) { ages[index] = i; ++ index; } } } 在上面的代码中...,允许的范围是0到99岁。...该方法用长度100的整数数组辅助空间换来了O(n)的时间效率。由于不管对多少人的年龄作排序,辅助数组的长度是固定的100个整数,因此它的空间复杂度是个常数,即O(1)。
首先o(1), o(n), o(logn), o(nlogn)是用来表示对应算法的时间复杂度,这是算法的时间复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。...其作用: 时间复杂度是指执行这个算法所需要的计算工作量; 空间复杂度是指执行这个算法所需要的内存空间; 时间和空间都是计算机资源的重要体现,而算法的复杂性就是体现在运行该算法时的计算机所需的资源多少;...O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 时间复杂度为O(n)—线性阶,就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。...n的平方倍,这是比线性更高的时间复杂度。...n*(n-1) 时间复杂度O(logn)—对数阶,当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。
记录爷爷(父亲的父亲) //. 我是父的右儿子(我是主角) //....记录下我的左子树(托管) // 旋转(爷、父、子关系重新调整) // 成为爷爷的右儿子 (如果没有爷爷,则跳过;且说明父是根,更新我成为根) //...记录爷爷(父亲的父亲) //. 我是父的右儿子 //....我是父的左儿子 //....左右 void RotateLR(Node* parent) { //我是儿子,但是主角是孙子 //记录下孙子 //记录下孙子的平衡因子(特征)
桶排序(Bucket Sort),是一种时间复杂度为O(n)的排序。 画外音:百度“桶排序”,很多文章是错误的,本文内容与《算法导论》中的桶排序保持一致。...桶排序需要两个辅助空间: (1)第一个辅助空间,是桶空间B; (2)第二个辅助空间,是桶内的元素链表空间; 总的来说,空间复杂度是O(n)。...1)桶X内的所有元素,是一直有序的; (2)插入排序是稳定的,因此桶内元素顺序也是稳定的; 当arr[N]中的所有元素,都按照上述步骤放入对应的桶后,就完成了全量的排序。...桶排序的伪代码是: bucket_sort(A[N]){ for i =1 to n{ 将A[i]放入对应的桶B[X]; 使用插入排序,将A[i]插入到...桶排序(Bucket Sort),总结: (1)桶排序,是一种复杂度为O(n)的排序; (2)桶排序,是一种稳定的排序; (3)桶排序,适用于数据均匀分布在一个区间内的场景; 希望这一分钟,大家有收获。
一、题意分析 通常我们会把频繁用到的数据放到缓存里,这样取数据比较快,但内存有限,所以经常会有一些淘汰策略,LRU就是其中一种,他的原理是:我们认为最近访问(包括 get 和 set)操作的数据,最有可能是接下来即将用到的数据...,当达到一定数量时,我们淘汰掉最近都没有访问的数据 这里需要注意的是,get 操作也算是“访问”了一次数据,显然 put 也算,因为最近插入的数据,极大可能是我马上要用到的数据 其实想要单纯实现是比较简单的...,题目难点在于存取时间复杂度的要求是 O(1) 二、实现原理 主要是数据结构的选取,我们可以简单来分析下: 首先存数据,时间复杂度为 O(1),如果是简单的追加数据,链表和数组都可以,但因为需要体现“...最近访问”,所以很大可能需要移动数据,那这时候数组就不是很适合了,链接倒是一个不错的选择 其次取数据,数组按下标取出,时间复杂度确实是 O(1),但显然我们这里是根据 key 去取对应的 value,...因此我们换一种思路,链表存取数据,包括key 和 value,而字典格式为 {key: node},即 key 和 对应的链表结点,这样就符合题目要求了 三、呈上代码 下面的实现还是有点不科学,首结点和尾结点没有用到循环链表
思路:因为数组已经是有序的,因此我们可以直接从两个数组的末位开始比较,将大的一个直接放到第一个数组的末尾,此时必须要求a数组的空间大小能够同时填充a数组和b数组的有效元素,然后依次比较两个数组元素的大小即可...代码实现: #include void merge(int *a, int n, int *b, int m) { int i = n-1;//a数组的最后一个有效元素的下标...int j = m-1;//b数组的最后一个有效元素的下标 int index = n+m-1; //合并数组的最后一位的下标 while (index) { if (i && a[i]>a...= a[i --]; else a[index --] = b[j --]; } } int main() { int a[] = {1,3,5,7,9,0,0,0,0,0}; int n...(int); int b[] = {2,4,6,8,10}; int m = sizeof(b)/sizeof(int); merge(a, 5, b, m); for_each(a, a+n,
烧脑题目:如何在 O(n) 的时间复杂度内按年龄给 100 万用户信息排序? 带着这个问题来学习下三个线性排序算法。...前几篇文章介绍了几个常用的排序算法:冒泡、选择、插入、归并、快速,他们的时间复杂度从 O(n^2) 到 O(nlogn),其实还有时间复杂度为 O(n) 的排序算法,他们分别是桶排序,计数排序,基数排序...你可能会问了,假如桶的个数是 m,每个桶中的数据量平均 n/m, 这个时间复杂度明明是 m*(n/m)*(log(n/m)) = n log(n/m),怎么可能是 O(n) 呢 ?...比如极端情况下桶的个数和元素个数相等,即 n = m, 此时时间复杂度就可以认为是 O(n)。...根据每一位来排序,我们利用上述桶排序或者计数排序,它们的时间复杂度可以做到 O(n)。如果要排序的数据有 k 位,那我们就需要 k 次桶排序或者计数排序,总的时间复杂度是 O(k*n)。
前言 NSArray 获取指定 元素 的位置 或者 判断是否存在指定的 元素 的时间复杂度是 O(n)(包含特定元素时,平均耗时是 O(n/2),如果不包含特定元素,耗时是 O(n))。...当我们需要频繁进行该操作时,可能会存在较大的性能问题。 该问题背后的原因很简单。官方文档明确指出 NSArray 从第 0 位开始依次判断是否相等,所以判断次数是 n (n 等于数组长度) ?...image 本文会介绍一个特别的方案,通过将数组转为字典,我们可以将时间复杂度降低到 O(1) 级别。...: 字典的 键 是数组存储的 元素 该设计方式可以保证后续通过 objectForKey: 判断是否存在指定的 元素 字典的 值 是 数组的 索引值 该规则保证字典可以恢复为数组 // 将数组转为字典...image 通过测试日志,我们可以发现该方案可以成功将时间复杂度降低到 O(1) 级别
众所周知,尽管基于 Attention 机制的 Transformer 类模型有着良好的并行性能,但它的空间和时间复杂度都是 O(n2)\mathcal {O}(n^2) 级别的,nn 是序列长度,所以当...QKTQK^T 这一步我们得到一个 n×nn\times n 的矩阵,之后还要做一个 Softmax 对一个 1×n1\times n 的行向量进行 Softmax,时间复杂度是 O(n)O (n),但是对一个...n×nn\times n 矩阵的每一行做一个 Softmax,时间复杂度就是 O(n2)O (n^2) 如果没有 Softmax,那么 Attention 的公式就变为三个矩阵连乘 QK⊤V\boldsymbol...{QK^{\top} V},而矩阵乘法是满足结合率的,所以我们可以先算 K⊤V\boldsymbol {K^{\top} V},得到一个 d×dd\times d 的矩阵(这一步的时间复杂度是 O(d2n...)O (d^2n)),然后再用 QQ 左乘它(这一步的时间复杂度是 O(d2n)O (d^2n)),由于 d≪nd \ll n,所以这样算大致的时间复杂度只是 O(n)O (n) 对于 BERT base
大家好,又见面了,我是全栈君。 1. 问题描写叙述 给定一个单链表,推断其内容是不是回文类型。 比如1–>2–>3–>2–>1。时间和空间复杂都尽量低。 ---- 2....方法与思路 1)比較朴素的算法。 因为给定的数据结构是单链表,要訪问链表的尾部元素,必须从头開始遍历。为了方便推断。...我们能够申请一个辅助栈结构来存储链表的内容,第一次遍历将链表节点值依次入栈,第二次遍历比較推断是否为回文。...时间O(n)和空间O(1)解法 既然用到了栈,能够想到递归的过程本身就是出入栈的过程,我们能够先递归訪问单链表,然后做比較。这样就省去了辅助空间,从而将空间复杂度降为O(1)。...代码例如以下: /** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next;
面试中,守望老铁遇到过在log(n)时间复杂度下求 a^b的问题。如何分析呢?...守望老铁此篇文章的博客地址为: https://blog.csdn.net/weixin_42292229/article/details/86742650 精彩内容 这样划分,我们只要求 ?...的值就可以的通过一次乘法运算求出 ? ,依次求出,这就是快速幂,这样的操作的时间复杂度仅为O(logb) 代码如下,需要注意a和b可能为负数的问题。...1public double quickPow(long a,long b) { 2 //在此,定义0的0次幂为1 3 long tmpb=b; 4 if(b<0) tmpb=-
对要排序的数据要求很苛刻 重点的是掌握这些排序算法的适用场景 【算法复习3】时间复杂度 O[n] 的排序 桶排序 计数排序基数排序 桶排序(Bucket sort) 时间复杂度O(n) 苛刻的数据...桶内排完序之后,再把每个桶里的数据按照顺序依次取出, 组成的序列就是有序的了。 时间复杂度O(n) n个数据分到 m 个桶内,每个桶里就有 k=n/m 个元素。...每个桶内部使用快速排序,时间复杂度为 O(k * logk) m 个桶排序的时间复杂度就是 O(m * k * logk) 当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,...按照每位来排序的排序算法要是稳定的 如果 不稳定会打乱顺序 之前的工作就无效了 时间复杂度是 O(k*n) K为数据位数 我们可以把所有的单词补齐到相同长度,位数不够的可以在后面补“0”,因为根据ASCII...除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到 O(n) 了。
随机快速读写是数组的一个重要特性,但是要随机访问数据,必须知道数据在数组中的下标。如果只是知道数据的值,想要在数组中找到这个值,那么就只能遍历整个数组,时间复杂度为 O(N)。...因为链表是不连续存储的,要想在链表中查找一个数据,只能遍历链表,所以链表的查找复杂度总是 O(N)。...如果只知道数据或者数据中的部分内容,想在数组中找到这个数据,还是需要遍历数组,时间复杂度为 O(N)。...如图所示: 因为有 Hash 冲突的存在,所以“Hash 表的时间复杂度为什么是 O(1)?”...这句话并不严谨,极端情况下,如果所有 Key 的数组下标都冲突,那么 Hash 表就退化为一条链表,查询的时间复杂度是 O(N)。
对于一个链表,请设计一个时间复杂度为O(n),额外空间复杂度为O(1)的算法,判断其是否为回文结构。给定一个链表的头指针A,请返回一个bool值,代表其是否为回文结构。保证链表长度小于等于900。...){ return false; } if (this.head.next == null){ //只有头节点自己,必然是回文...cur.next = slow; slow = cur; cur = curNext.next; } //此时slow是最后一个了
领取专属 10元无门槛券
手把手带您无忧上云