import numpy as np
class Bounding_box:
def __init__(self, x1, y1, x2, y2, score):
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
self.score = score
def get_iou(boxa, boxb):
max_x = max(boxa.x1, boxb.x1)
max_y = max(boxa.y1, boxb.y1)
min_x = min(boxa.x2, boxb.x2)
min_y = min(boxa.y2, boxb.y2)
if min_x <= max_x or min_y <= max_y:
return 0
area_i = (min_x - max_x) * (min_y - max_y)
area_a = (boxa.x2 - boxa.x1) * (boxa.y2 - boxa.y1)
area_b = (boxb.x2 - boxb.x1) * (boxb.y2 - boxb.y1)
area_u = area_a + area_b - area_i
return float(area_i) / float(area_u)
def NMS(box_lists, k):
box_lists = sorted(box_lists, key=lambda x: x.score, reverse=True)
NMS_lists = [box_lists[0]]
temp_lists = []
for i in range(k):
for j in range(1, len(box_lists)):
iou = get_iou(NMS_lists[i], box_lists[j])
if iou < 0.7:
temp_lists.append(box_lists[j])
if len(temp_lists) == 0:
return NMS_lists
box_lists = temp_lists
temp_lists = []
NMS_lists.append(box_lists[0])
return NMS_lists
box1 = Bounding_box(13, 22, 268, 367, 0.124648176)
box2 = Bounding_box(18, 27, 294, 400, 0.35818103)
box3 = Bounding_box(234, 123, 466, 678, 0.13638769)
box_lists = [box1, box2, box3]
NMS_list = NMS(box_lists, 2)
print(NMS_list)
print(NMS_list[0].x1)
def compute_iou_numpy(box1, box2, wh=False):
"""
compute the iou of two boxes.
Args:
box1, box2: [xmin, ymin, xmax, ymax] (wh=False) or [xcenter, ycenter, w, h] (wh=True)
wh: the format of coordinate.
Return:
iou: iou of box1 and box2.
"""
if wh == False:
xmin1, ymin1, xmax1, ymax1 = box1
xmin2, ymin2, xmax2, ymax2 = box2
else:
xmin1, ymin1 = int(box1[0] - box1[2] / 2.0), int(box1[1] - box1[3] / 2.0)
xmax1, ymax1 = int(box1[0] + box1[2] / 2.0), int(box1[1] + box1[3] / 2.0)
xmin2, ymin2 = int(box2[0] - box2[2] / 2.0), int(box2[1] - box2[3] / 2.0)
xmax2, ymax2 = int(box2[0] + box2[2] / 2.0), int(box2[1] + box2[3] / 2.0)
## 获取矩形框交集对应的左上角和右下角的坐标(intersection)
xx1 = np.max([xmin1, xmin2])
yy1 = np.max([ymin1, ymin2])
xx2 = np.min([xmax1, xmax2])
yy2 = np.min([ymax1, ymax2])
## 计算两个矩形框面积
area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
inter_area = (np.max([0, xx2 - xx1])) * (np.max([0, yy2 - yy1]))
iou = inter_area / (area1 + area2 - inter_area + 1e-6)
return iou
# method1
def calculateIoU(candidateBound, groundTruthBound):
'''
:param candidateBound: (xmin,ymin,xmax,ymax)
:param groundTruthBound: (xmin,ymin,xmax,ymax)
:return:
'''
cx1 = candidateBound[0]
cy1 = candidateBound[1]
cx2 = candidateBound[2]
cy2 = candidateBound[3]
gx1 = groundTruthBound[0]
gy1 = groundTruthBound[1]
gx2 = groundTruthBound[2]
gy2 = groundTruthBound[3]
carea = (cx2 - cx1) * (cy2 - cy1) # C的面积
garea = (gx2 - gx1) * (gy2 - gy1) # G的面积
x1 = max(cx1, gx1)
y1 = max(cy1, gy1)
x2 = min(cx2, gx2)
y2 = min(cy2, gy2)
w = max(0, x2 - x1)
h = max(0, y2 - y1)
area = w * h # C∩G的面积
iou = area / (carea + garea - area)
return iou
# method2
def compute_iou(rec1, rec2):
"""
computing IoU
:param rec1: (xmin,ymin,xmax,ymax), which reflects
(left,top, right,bottom)
:param rec2: (xmin,ymin,xmax,ymax)
:return: scala value of IoU
"""
# computing area of each rectangles
S_rec1 = (rec1[3] - rec1[1]) * (rec1[2] - rec1[0])
S_rec2 = (rec2[3] - rec2[1]) * (rec2[2] - rec2[0])
# computing the sum_area
sum_area = S_rec1 + S_rec2
# find the each edge of intersect rectangle
left_line = max(rec1[0], rec2[0])
right_line = min(rec1[2], rec2[2])
top_line = max(rec1[1], rec2[1])
bottom_line = min(rec1[3], rec2[3])
# judge if there is an intersect
if left_line >= right_line or top_line >= bottom_line:
return 0
else:
intersect = (right_line - left_line) * (bottom_line - top_line)
return intersect / (sum_area - intersect)
def test_iou():
rect2 = [0, 0, 100, 100]
rect1 = (50, 50, 150, 150)
iou = compute_iou_numpy(rect1, rect2)
print(iou)
if __name__ == '__main__':
test_iou()