
This folder contains the implementation of the Swin Transformer for image classification.
Please refer to MODEL HUB for more pre-trained models.
We recommend using the pytorch docker nvcr>=21.05 by nvidia: PyTorch | NVIDIA NGC.
git clone https://github.com/microsoft/Swin-Transformer.git
cd Swin-Transformerconda create -n swin python=3.7 -y
conda activate swinCUDA>=10.2 with cudnn>=7 following the official installation instructionsPyTorch>=1.8.0 and torchvision>=0.9.0 with CUDA>=10.2:conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorchtimm==0.4.12:pip install timm==0.4.12pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8 pyyaml scipy--fused_window_process in the running scriptcd kernels/window_process
python setup.py install #--userWe use standard ImageNet dataset, you can download it from ImageNet. We provide the following two ways to load data:
train.zip, val.zip: which store the zipped folder for train and validate splits.train_map.txt, val_map.txt: which store the relative path in the corresponding zip file and ground truth label. Make sure the data folder looks like this:$ tree data data └── ImageNet-Zip ├── train_map.txt ├── train.zip ├── val_map.txt └── val.zip $ head -n 5 data/ImageNet-Zip/val_map.txt ILSVRC2012_val_00000001.JPEG 65 ILSVRC2012_val_00000002.JPEG 970 ILSVRC2012_val_00000003.JPEG 230 ILSVRC2012_val_00000004.JPEG 809 ILSVRC2012_val_00000005.JPEG 516 $ head -n 5 data/ImageNet-Zip/train_map.txt n01440764/n01440764_10026.JPEG 0 n01440764/n01440764_10027.JPEG 0 n01440764/n01440764_10029.JPEG 0 n01440764/n01440764_10040.JPEG 0 n01440764/n01440764_10042.JPEG 0
fall11_whole and move all images to labeled sub-folders in this folder. Then download the train-val split file (ILSVRC2011fall_whole_map_train.txt & ILSVRC2011fall_whole_map_val.txt) , and put them in the parent directory of fall11_whole. The file structure should look like:
$ tree imagenet22k/ imagenet22k/ ├── ILSVRC2011fall_whole_map_train.txt ├── ILSVRC2011fall_whole_map_val.txt └── fall11_whole ├── n00004475 ├── n00005787 ├── n00006024 ├── n00006484 └── ...
To evaluate a pre-trained Swin Transformer on ImageNet val, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> --master_port 12345 main.py --eval \
--cfg <config-file> --resume <checkpoint> --data-path <imagenet-path> For example, to evaluate the Swin-B with a single GPU:
python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval \
--cfg configs/swin/swin_base_patch4_window7_224.yaml --resume swin_base_patch4_window7_224.pth --data-path <imagenet-path>To train a Swin Transformer on ImageNet from scratch, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> --master_port 12345 main.py \
--cfg <config-file> --data-path <imagenet-path> [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag>]Notes:
--zip to the parameters. --cache-mode part, which will shard the dataset into non-overlapping pieces for different GPUs and only load the corresponding one for each GPU.--accumulation-steps <steps>, set appropriate <steps> according to your need.--use-checkpoint, e.g., it saves about 60% memory when training Swin-B. Please refer to this page for more details.--opts KEY1 VALUE1 KEY2 VALUE2, e.g., --opts TRAIN.EPOCHS 100 TRAIN.WARMUP_EPOCHS 5 will change total epochs to 100 and warm-up epochs to 5.python main.py --help to get detailed message.For example, to train Swin Transformer with 8 GPU on a single node for 300 epochs, run:
Swin-T:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \
--cfg configs/swin/swin_tiny_patch4_window7_224.yaml --data-path <imagenet-path> --batch-size 128 Swin-S:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \
--cfg configs/swin/swin_small_patch4_window7_224.yaml --data-path <imagenet-path> --batch-size 128 Swin-B:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \
--cfg configs/swin/swin_base_patch4_window7_224.yaml --data-path <imagenet-path> --batch-size 64 \
--accumulation-steps 2 [--use-checkpoint]For example, to pre-train a Swin-B model on ImageNet-22K:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \
--cfg configs/swin/swin_base_patch4_window7_224_22k.yaml --data-path <imagenet22k-path> --batch-size 64 \
--accumulation-steps 8 [--use-checkpoint]For example, to fine-tune a Swin-B model pre-trained on 224x224 resolution to 384x384 resolution:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \
--cfg configs/swin/swin_base_patch4_window12_384_finetune.yaml --pretrained swin_base_patch4_window7_224.pth \
--data-path <imagenet-path> --batch-size 64 --accumulation-steps 2 [--use-checkpoint]For example, to fine-tune a Swin-B model pre-trained on ImageNet-22K(21K):
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py \
--cfg configs/swin/swin_base_patch4_window7_224_22kto1k_finetune.yaml --pretrained swin_base_patch4_window7_224_22k.pth \
--data-path <imagenet-path> --batch-size 64 --accumulation-steps 2 [--use-checkpoint]To measure the throughput, run:
python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py \
--cfg <config-file> --data-path <imagenet-path> --batch-size 64 --throughput --disable_amppython3 -m pip uninstall tutel -y
python3 -m pip install --user --upgrade git+https://github.com/microsoft/tutel@mainFor example, to train a Swin-MoE-S model with 32 experts on ImageNet-22K with 32 GPUs (4 nodes):
python -m torch.distributed.launch --nproc_per_node 8 --nnode=4 \
--node_rank=<node-rank> --master_addr=<master-ip> --master_port 12345 main_moe.py \
--cfg configs/swinmoe/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.yaml --data-path <imagenet22k-path> --batch-size 128To evaluate a Swin-MoE-S with 32 experts on ImageNet-22K with 32 GPUs (4 nodes):
python -m torch.distributed.launch --nproc_per_node 8 --nnode=4 \
--node_rank=<node-rank> --master_addr=<master-ip> --master_port 12345 main_moe.py \
--cfg configs/swinmoe/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.yaml --data-path <imagenet22k-path> --batch-size 128 \
--resume swin_moe_small_patch4_window12_192_32expert_32gpu_22k/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.pth More Swin-MoE models can be found in MODEL HUB
To evaluate a provided model on ImageNet validation set, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> main_simmim_ft.py \
--eval --cfg <config-file> --resume <checkpoint> --data-path <imagenet-path>For example, to evaluate the Swin Base model on a single GPU, run:
python -m torch.distributed.launch --nproc_per_node 1 main_simmim_ft.py \
--eval --cfg configs/simmim/simmim_finetune__swin_base__img224_window7__800ep.yaml --resume simmim_finetune__swin_base__img224_window7__800ep.pth --data-path <imagenet-path>To pre-train models with SimMIM, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> main_simmim_pt.py \
--cfg <config-file> --data-path <imagenet-path>/train [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag>]For example, to pre-train Swin Base for 800 epochs on one DGX-2 server, run:
python -m torch.distributed.launch --nproc_per_node 16 main_simmim_pt.py \
--cfg configs/simmim/simmim_pretrain__swin_base__img192_window6__800ep.yaml --batch-size 128 --data-path <imagenet-path>/train [--output <output-directory> --tag <job-tag>]To fine-tune models pre-trained by SimMIM, run:
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> main_simmim_ft.py \
--cfg <config-file> --data-path <imagenet-path> --pretrained <pretrained-ckpt> [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag>]For example, to fine-tune Swin Base pre-trained by SimMIM on one DGX-2 server, run:
python -m torch.distributed.launch --nproc_per_node 16 main_simmim_ft.py \
--cfg configs/simmim/simmim_finetune__swin_base__img224_window7__800ep.yaml --batch-size 128 --data-path <imagenet-path> --pretrained <pretrained-ckpt> [--output <output-directory> --tag <job-tag>]地址:github.com/microsoft/Swin-Transformer/blob/main/get_started.md