Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >NumPy 舍入小数、对数、求和和乘积运算详解

NumPy 舍入小数、对数、求和和乘积运算详解

原创
作者头像
小万哥
发布于 2024-06-12 12:50:11
发布于 2024-06-12 12:50:11
18000
代码可运行
举报
文章被收录于专栏:程序人生丶程序人生丶
运行总次数:0
代码可运行

舍入小数

在 NumPy 中,主要有五种方法来舍入小数:

截断

去除小数部分,并返回最接近零的浮点数。使用 trunc()fix() 函数。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.trunc([-3.1666, 3.6667])

print(arr)

相同的示例,使用 fix()

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.fix([-3.1666, 3.6667])

print(arr)

四舍五入

around() 函数在数字大于或等于 5 时将前面的数字或小数部分加 1。

例如:将数字四舍五入到 1 个小数位,3.16666 是 3.2。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.around(3.1666, 2)

print(arr)

向下取整

floor() 函数将小数舍入到最接近的较低整数。

例如:3.166 的 floor 是 3。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.floor([-3.1666, 3.6667])

print(arr)

向上取整

ceil() 函数将小数舍入到最接近的较高整数。

例如:3.166 的 ceil 是 4。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.ceil([-3.1666, 3.6667])

print(arr)

NumPy 对数

NumPy 提供了在底数为 2、e 和 10 的情况下执行对数运算的函数。

我们还将探讨如何通过创建自定义的 ufunc 来以任意底数取对数。

如果无法计算对数,所有的对数函数都会在元素中放置 -infinf

底数为 2 的对数

使用 log2() 函数执行底数为 2 的对数运算。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.arange(1, 10)

print(np.log2(arr))

注意:arange(1, 10) 函数返回一个从 1(包括)到 10(不包括)的整数数组。

底数为 10 的对数

使用 log10() 函数执行底数为 10 的对数运算。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.arange(1, 10)

print(np.log10(arr))

自然对数,即底数为 e 的对数

使用 log() 函数执行底数为 e 的对数运算。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.arange(1, 10)

print(np.log(arr))

任意底数的对数

NumPy 不提供任意底数的对数函数,所以我们可以使用 frompyfunc() 函数结合内置函数 math.log(),它有两个输入参数和一个输出参数:

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
from math import log
import numpy as np

nplog = np.frompyfunc(log, 2, 1)

print(nplog(100, 15))

NumPy 求和

求和和加法有什么区别?

加法是在两个参数之间进行操作,而求和是在 n 个元素上进行操作。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([1, 2, 3])

newarr = np.add(arr1, arr2)

print(newarr)

返回:[2 4 6]

示例

arr1arr2 中的值进行求和:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([1, 2, 3])

newarr = np.sum([arr1, arr2])

print(newarr)

返回:12

沿轴求和

如果指定 axis=1,则 NumPy 将对每个数组中的数字进行求和。

示例

在以下数组上沿第一个轴执行求和:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([1, 2, 3])

newarr = np.sum([arr1, arr2], axis=1)

print(newarr)

返回:[6 6]

累积求和

累积求和意味着部分地对数组中的元素进行相加。

例如:[1, 2, 3, 4] 的部分和将是 [1, 1+2, 1+2+3, 1+2+3+4] = [1, 3, 6, 10]

使用 cumsum() 函数执行部分求和。

示例

在以下数组中执行累积求和:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.array([1, 2, 3])

newarr = np.cumsum(arr)

print(newarr)

返回:[1 3 6]

NumPy 乘积

要找到数组中元素的乘积,使用 prod() 函数。

示例:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.array([1, 2, 3, 4])

x = np.prod(arr)

print(x)

返回:24,因为 1*2*3*4 = 24

示例

找到两个数组中元素的乘积:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([5, 6, 7, 8])

x = np.prod([arr1, arr2])

print(x)

返回:40320,因为 1*2*3*4*5*6*7*8 = 40320

沿轴的乘积

如果指定 axis=1,则 NumPy 将返回每个数组的乘积。

示例

在以下数组上沿第一个轴执行乘积:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([5, 6, 7, 8])

newarr = np.prod([arr1, arr2], axis=1)

print(newarr)

返回:[24 1680]

累积乘积

累积乘积意味着部分地进行乘法。

例如:[1, 2, 3, 4] 的部分乘积是 [1, 1*2, 1*2*3, 1*2*3*4] =1, 2, 6, 24`

使用 cumprod() 函数执行部分乘积。

示例

对以下数组中所有元素进行累积乘积:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

arr = np.array([5, 6, 7, 8])

newarr = np.cumprod(arr)

print(newarr)

返回:[5 30 210 1680]

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
软件测试|Python科学计算神器numpy教程(九)
NumPy是Python中最常用的科学计算库之一,它提供了高性能的多维数组对象和各种用于操作数组的函数。在本文中,我们将探讨如何使用NumPy进行数组元素的增加、删除、修改和查询操作。这些操作是数据处理和分析中常用的操作,通过学习它们,您将能够更好地利用NumPy进行数据处理和分析。
霍格沃兹测试开发Muller老师
2023/08/20
3210
NumPy 简单算术:加减乘除及其他运算
你可以直接在 NumPy 数组之间使用算术运算符 + - * /,但本节讨论了一个扩展,其中我们有函数可以接受任何类似数组的对象,如列表、元组等,并根据条件执行算术运算。
小万哥
2024/06/11
1230
NumPy 简单算术:加减乘除及其他运算
【深度学习】 NumPy详解(三):数组数学(元素、数组、矩阵级别的各种运算)
Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容:
Qomolangma
2024/07/29
1470
【深度学习】 NumPy详解(三):数组数学(元素、数组、矩阵级别的各种运算)
50个常用的 Numpy 函数详解
来源:CDA数据分析师 本文约7500字,建议阅读15分钟 在本文中,将介绍NumPy在数据科学中最重要和最有用的一些函数。 Numpy是python中最有用的工具之一。它可以有效地处理大容量数据。使用NumPy的最大原因之一是它有很多处理数组的函数。在本文中,将介绍NumPy在数据科学中最重要和最有用的一些函数。 创建数组 1、Array 它用于创建一维或多维数组 numpy.array(object, dtype=None, *, copy=True, order='K'
数据派THU
2023/05/18
1K0
50个常用的 Numpy 函数详解
数据分析与数据挖掘 - 04科学计算
在人工智能的研发中,其本质就是把一切问题转化为数学问题,所以数学运算非常重要。很多数学运算采用的都是numpy这个库,因为它提供了非常多的科学计算的方法,能让我们的工作变得非常便利,这一章我将从numpy的基本使用开始,逐渐解决掉那些数学问题,让Python与数学能够更紧密的结合在一起。
马一特
2020/09/10
5760
NumPy 数组迭代与合并详解
NumPy 数组迭代是访问和处理数组元素的重要方法。它允许您逐个或成组地遍历数组元素。
小万哥
2024/05/14
1460
NumPy 数组迭代与合并详解
Python Numpy基本数学运算
Numpy是Python中强大的数值计算库,其广泛用于数据科学、机器学习和科学计算中。Numpy提供了丰富的数学运算功能,能够对数组进行各种基本运算,如加法、减法、乘法和除法。这些基本运算是许多复杂算法的基础,因此掌握它们对于有效地处理数据至关重要。本文将详细介绍如何使用Numpy进行基本数学运算,并通过示例代码演示其应用。
sergiojune
2024/08/20
2100
Python Numpy基本数学运算
NumPy 双曲函数与集合操作详解
NumPy 提供了 sinh()、cosh() 和 tanh() 等 ufunc,它们接受弧度值并生成相应的双曲正弦、双曲余弦和双曲正切值。
小万哥
2024/06/18
1120
NumPy 双曲函数与集合操作详解
Python---numpy的初步认识
NumPy是Python科学计算的基础包。  (它提供了多维数组对象、基于数组的各种派生对象(例如,masked Array, 矩阵)。除此之外,还提供了各种各样的加快数组操作的例程,包括数学基本计算、逻辑、图形操作、排序、选择、输入输出,离散傅立叶变换、基础线性代数、基础统计操作、随机仿真等等。)
用户7886150
2021/01/06
1.2K0
NumPy入个门吧
NumPy 的全称叫 Numerical Python ,它是 Python 科学计算最重要的基础包之一。很多提供科学计算的包都是基于 NumPy 之上建立的,著名的 pandas 也是。
德育处主任
2024/02/24
1460
NumPy 中级教程——数组操作
NumPy 是 Python 中用于科学计算的核心库之一,提供了强大的数组操作功能。本篇博客将深入介绍 NumPy 中的数组操作,包括数组的切片、索引、形状操作、合并与分割等,通过实例演示如何应用这些功能。
Echo_Wish
2023/12/30
1800
NumPy从入门到放弃
公众号本文地址:https://mp.weixin.qq.com/s/EocThNWhQlI2zeLcUApsQQ
愷龍
2024/08/09
2030
NumPy从入门到放弃
Python学习之numpy——2
如果你使用 Python 语言进行科学计算,那么一定会接触到 Numpy。Numpy 是支持 Python 语言的数值计算扩充库,其拥有强大的高维度数组处理与矩阵运算能力。除此之外,Numpy 还内建了大量的函数,方便你快速构建数学模型。
用户7886150
2021/01/08
1.7K0
Python Numpy基础:数组的创建与基本属性
在科学计算和数据分析领域,Python的Numpy库是一个不可或缺的工具。它提供了强大的多维数组对象,以及丰富的函数库,能够高效地处理大规模数据。本篇文章将详细介绍Numpy数组的创建方式与基本属性,帮助你更好地掌握这一基础知识,为深入学习和应用Numpy打下坚实的基础。
sergiojune
2024/08/14
2720
Python Numpy基础:数组的创建与基本属性
数据分析之numpy
ndarray概述 创建n维数组 接收的是列表类型,所有元素类型必须相同 shape表示各维度大小的元组 dtype表示数组数据类型对象
Python疯子
2018/09/06
1.3K0
数据分析之numpy
再肝3天,整理了90个NumPy案例,不能不收藏!
Numpy 是什么就不太过多介绍了,懂的人都懂! 文章很长,总是要忍一下,如果忍不了,那就收藏吧,总会用到的 萝卜哥也贴心的做成了PDF,在文末获取! 前情回顾: 肝了3天,整理了90个Pandas案例,强烈建议收藏! 2021-10-18 又肝了3天,整理了80个Python DateTime 例子,必须收藏! 2021-10-20 有多个条件时替换 Numpy 数组中的元素 将所有大于 30 的元素替换为 0 将大于 30 小于 50 的所有元素替换为 0 给所有大于 40 的元素加 5 用 N
周萝卜
2021/11/08
4.1K0
50个常用的Numpy函数解释,参数和使用示例
Numpy是python中最有用的工具之一。它可以有效地处理大容量数据。使用NumPy的最大原因之一是它有很多处理数组的函数。在本文中,将介绍NumPy在数据科学中最重要和最有用的一些函数。
deephub
2022/11/11
1.3K0
50个常用的Numpy函数解释,参数和使用示例
python的numpy入门简介
arr=np.array(data)    #将列表转为numpy.ndarray  np.array([2,4])
用户7886150
2021/01/07
1.5K0
Python中NumPy库的相关操作
NumPy(Numerical Python)是Python中常用的数值计算库,它提供了高性能的多维数组对象和对数组进行操作的函数。
周小末天天开心
2023/10/16
2450
NumPy 差分、最小公倍数、最大公约数、三角函数详解
例如,对于 [1, 2, 3, 4],离散差分将是 [2-1, 3-2, 4-3] = [1, 1, 1]
小万哥
2024/06/17
1540
NumPy 差分、最小公倍数、最大公约数、三角函数详解
相关推荐
软件测试|Python科学计算神器numpy教程(九)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验