前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >NumPy 正态分布与 Seaborn 可视化指南

NumPy 正态分布与 Seaborn 可视化指南

原创
作者头像
小万哥
发布2024-05-23 21:55:32
860
发布2024-05-23 21:55:32
举报
文章被收录于专栏:程序人生丶

正态分布(高斯分布)

简介

正态分布(也称为高斯分布)是一种非常重要的概率分布,它描述了许多自然和人为现象的数据分布情况。正态分布的形状呈钟形,其峰值位于平均值处,两侧对称下降。

特征

正态分布可以用两个参数来完全描述:

均值(μ):表示数据的平均值,分布的峰值位于 μ 处。

标准差(σ):表示数据的离散程度,数值越大,分布越平坦。

生成正态分布数据

NumPy 提供了 random.normal() 函数来生成服从正态分布的随机数。该函数接受以下参数:

loc:正态分布的均值,默认为 0。

scale:正态分布的标准差,默认为 1。

size:输出数组的形状。

示例:生成 100 个服从正态分布的随机数,均值为 5,标准差为 2:

代码语言:python
代码运行次数:0
复制
import numpy as np

data = np.random.normal(loc=5, scale=2, size=100)
print(data)

可视化正态分布

Seaborn 库提供了便捷的函数来可视化分布,包括正态分布。

示例:绘制服从正态分布的数据的分布图:

代码语言:python
代码运行次数:0
复制
import seaborn as sns
import numpy as np

data = np.random.normal(size=1000)

sns.distplot(data)
plt.show()

应用

正态分布在许多领域都有应用,例如:

统计学:用于推断总体参数,进行假设检验等。

机器学习:用于数据预处理,特征工程等。

金融:用于建模股票价格、汇率等金融数据。

工程:用于控制质量、可靠性分析等。

练习

  1. 生成 500 个服从正态分布的随机数,均值为 10,标准差为 3,并绘制它们的分布图。
  2. 比较不同标准差下正态分布形状的变化。
  3. 利用正态分布来模拟一次考试成绩,并计算平均分和标准分。

解决方案

代码语言:python
代码运行次数:0
复制
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

# 1. 生成服从正态分布的随机数并绘制分布图
data = np.random.normal(loc=10, scale=3, size=500)
sns.distplot(data)
plt.show()

# 2. 比较不同标准差下正态分布形状的变化
sns.distplot(np.random.normal(size=1000, scale=1), label="σ=1")
sns.distplot(np.random.normal(size=1000, scale=2), label="σ=2")
sns.distplot(np.random.normal(size=1000, scale=3), label="σ=3")
plt.legend()
plt.show()

# 3. 模拟考试成绩并计算平均分和标准分
scores = np.random.normal(loc=80, scale=10, size=100)
print("平均分:", scores.mean())
print("标准分:", (scores - scores.mean()) / scores.std())

解释:

在第一个练习中,我们生成了 500 个服从正态分布的随机数,均值为 10,标准差为 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。

在第二个练习中,我们生成了三个服从正态分布的数据集,分别设置标准差为 1、2 和 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。我们可以观察到,随着标准差的增加,分布变得更加平坦,两侧的尾巴更加明显。

在第三个练习中,我们模拟了一次考试成绩,假设成绩服从正态分布,均值为 80,标准差为 10。然后,我们计算了考试成绩的平均分和标准分。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 正态分布(高斯分布)
    • 简介
      • 特征
        • 生成正态分布数据
          • 可视化正态分布
            • 应用
              • 练习
              • 解决方案
              • 最后
              相关产品与服务
              腾讯云 TI 平台
              腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档