前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >几何非线性| 应变张量

几何非线性| 应变张量

作者头像
fem178
发布2024-04-30 17:39:15
1390
发布2024-04-30 17:39:15
举报
文章被收录于专栏:数值分析与有限元编程

考虑二维空间中的一个连续体,分别是其中的两个物质点,如图3.1所示。在连续体变形前(时刻)引入物质坐标系,另外,在连续体变形之后(时刻)引入空间坐标系。两个坐标系相关的基向量分别为和。

按照描述,位置矢量

\begin{split} \mathbf X &= X_1 \mathbf E_1 + X_2 \mathbf E_2 \\ \end{split} \tag{1.1}
\begin{split} \mathbf x &= x_1 \mathbf E_1 + x_2 \mathbf E_2 \\ \end{split} \tag{1.2}

位移矢量

\mathbf u = u_1 \mathbf E_1 + u_2 \mathbf E_2 \tag{2}

变形前后的位置矢量之间的关系为

\begin{split} \mathbf x &= \mathbf X + \mathbf u \\ d\mathbf x &= d \mathbf X + d \mathbf u \end{split} \tag{3}

使用坐标系,变形后的物体中任意点的位置矢量:

\begin{split} x_1 &= x_1(X_1,X_2) \\ \end{split} \tag{4.1}
\begin{split} x_2 &= x_2(X_1,X_2) \\ \end{split} \tag{4.2}

变形前的在变形后移动到新的位置,记

\begin{split} dS^2 &= d \mathbf X \cdot d \mathbf X = dX_1dX_1+dX_2dX_2\\ ds^2 &= d \mathbf x \cdot d \mathbf x = dx_1dx_1+dx_2dx_2 \end{split} \quad (5)

于是

\Delta^2= ds^2-dS^2 = d \mathbf x \cdot d \mathbf x-d \mathbf X \cdot d \mathbf X \quad (6)

定义梯度算子

\begin{split} \nabla(\cdot) &= \frac{\partial(\cdot) } {\partial\mathbf X}\\ \nabla_x(\cdot) &= \frac{\partial(\cdot) } {\partial\mathbf x} \end{split} \quad (7)

\begin{split} d\mathbf x &= \nabla(\mathbf x) d \mathbf X = \mathbf F \cdot d \mathbf X = \frac{\partial\mathbf x(\mathbf X,t) }{\partial\mathbf X}d \mathbf X \\ d\mathbf u &= \nabla(\mathbf u) d \mathbf X = \mathbf H\cdot d \mathbf X \end{split} \quad (8)

其中,叫做变形梯度,叫做位移梯度。

由(3)可得

\begin{split} \mathbf H &= \nabla(\mathbf x -\mathbf X) \\ &= \nabla \mathbf x -\nabla \mathbf X \\ &= \frac{\partial\mathbf x}{\partial\mathbf X}- \frac{\partial\mathbf X}{\partial\mathbf X} \\ &= \mathbf F - \mathbf I \end{split} \tag{9}
\begin{split} \Delta^2 &= ds^2-dS^2\\ &=(\mathbf F \cdot d \mathbf X)(\mathbf F \cdot d \mathbf X) - d \mathbf X \cdot d \mathbf X \\ &= (d \mathbf X\cdot \mathbf F^T)(\mathbf F \cdot d \mathbf X)-d \mathbf X \cdot d \mathbf X\\ &=d\mathbf X(\mathbf F^T\mathbf F)d\mathbf X - d\mathbf X(\mathbf I)d\mathbf X\\ &=d\mathbf X(\mathbf F^T\mathbf F-\mathbf I)d\mathbf X \end{split} \tag{10}

定义应变

\mathbf E = \frac{1}{2}(\mathbf F^T\mathbf F-\mathbf I) \tag{11}

\Delta^2 = 2 d\mathbf X (\mathbf F^T\mathbf F-\mathbf I) d\mathbf X \tag{12}

由(9)可得

\mathbf F = \mathbf H + \mathbf I \tag{13}

\mathbf E = \frac{1}{2}((\mathbf H + \mathbf I)^T(\mathbf H + \mathbf I)-\mathbf I) \tag{14}

展开,得

\mathbf E = \frac{1}{2}(\mathbf H + \mathbf H^T + \mathbf H^T \mathbf H ) \tag{15}

忽略高阶量,线性化的拉格朗日应变张量为

\hat{\mathbf E }= \frac{1}{2}(\mathbf H + \mathbf H^T ) \tag{16}

[例1] 给出如下的运动

\begin{split} x_1 &= X_1 - X_2X_3\\ x_2 &= X_2 + X_1X_3\\ x_3 &= X_3 + \phi(X_1,X_2)\\ \end{split}

则由得

\begin{split} u_1 &= - X_2X_3\\ u_2 &= X_1X_3\\ u_3 &= \phi(X_1,X_2)\\ \end{split}

作求导运算

\begin{split} \frac{\partial u_1 }{\partial X_1} &= 0 \\ \frac{\partial u_1 }{\partial X_2} &= -X_3\\ \frac{\partial u_1 }{\partial X_3} &= -X_2\\ \frac{\partial u_2 }{\partial X_1} &= X_3 \\ \frac{\partial u_2 }{\partial X_2} &= 0\\ \frac{\partial u_2 }{\partial X_3} &= X_1\\ \frac{\partial u_3 }{\partial X_1} &= \frac{\partial \phi }{\partial X_1} \\ \frac{\partial u_3 }{\partial X_2} &= \frac{\partial \phi }{\partial X_2} \\ \frac{\partial u_3 }{\partial X_3} &= 0\\ \end{split}

位移梯度

\begin{split} \mathbf H &= \frac{\partial \mathbf u_i }{\partial \mathbf X_j } \\ &= \begin{bmatrix} \frac{\partial u_1 }{\partial X_1} & \frac{\partial u_1 }{\partial X_2} & \frac{\partial u_1 }{\partial X_3} \\ \frac{\partial u_2 }{\partial X_1} & \frac{\partial u_2 }{\partial X_2} & \frac{\partial u_2 }{\partial X_3} \\ \frac{\partial u_3 }{\partial X_1} & \frac{\partial u_3 }{\partial X_2} & \frac{\partial u_3 }{\partial X_3} \\ \end{bmatrix} \\ &= \begin{bmatrix} 0 & -X_3 & -X_2 \\ X_3 & 0 & X_1\\ \frac{\partial \phi }{\partial X_1} & \frac{\partial \phi }{\partial X_2} & 0\\ \end{bmatrix} \\ \end{split}
\begin{split} \mathbf H &= \frac{\partial \mathbf u_i }{\partial \mathbf X_j } \\ &= \begin{bmatrix} \frac{\partial u_1 }{\partial X_1} & \frac{\partial u_1 }{\partial X_2} & \frac{\partial u_1 }{\partial X_3} \\ \frac{\partial u_2 }{\partial X_1} & \frac{\partial u_2 }{\partial X_2} & \frac{\partial u_2 }{\partial X_3} \\ \frac{\partial u_3 }{\partial X_1} & \frac{\partial u_3 }{\partial X_2} & \frac{\partial u_3 }{\partial X_3} \\ \end{bmatrix} \\ &= \begin{bmatrix} 0 & -X_3 & -X_2 \\ X_3 & 0 & X_1\\ \frac{\partial \phi }{\partial X_1} & \frac{\partial \phi }{\partial X_2} & 0\\ \end{bmatrix} \\ \end{split}
\begin{split} \mathbf H &= \frac{\partial \mathbf u_i }{\partial \mathbf X_j } \\ &= \begin{bmatrix} \frac{\partial u_1 }{\partial X_1} & \frac{\partial u_1 }{\partial X_2} & \frac{\partial u_1 }{\partial X_3} \\ \frac{\partial u_2 }{\partial X_1} & \frac{\partial u_2 }{\partial X_2} & \frac{\partial u_2 }{\partial X_3} \\ \frac{\partial u_3 }{\partial X_1} & \frac{\partial u_3 }{\partial X_2} & \frac{\partial u_3 }{\partial X_3} \\ \end{bmatrix} \\ &= \begin{bmatrix} 0 & -X_3 & -X_2 \\ X_3 & 0 & X_1\\ \frac{\partial \phi }{\partial X_1} & \frac{\partial \phi }{\partial X_2} & 0\\ \end{bmatrix} \\ \end{split}
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-04-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数值分析与有限元编程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档