大家好,我是皮皮。
国庆期间在Python白银交流群【谢峰】问了一个Pandas
处理的问题,提问截图如下:
代码如下:
import pandas as pd
data = [{'name': '小明', 'age': 18}, {'name': '小张', 'age': 20}, {'name': '小明', 'age': 20}, {'name': '小明', 'age': 38}]
data = pd.DataFrame(data)
# print(data)
# 删除名字重复的,只保留年龄最大的那个
data = data.drop_duplicates('name', inplace=False)
print(data)
这里【甯同学】给了一个思路,先排个序,再删,并且给出了如下代码:
import pandas as pd
data = [{'name': '小明', 'age': 18}, {'name': '小张', 'age': 20}, {'name': '小明', 'age': 20}, {'name': '小明', 'age': 38}]
data = pd.DataFrame(data)
# print(data)
# 删除名字重复的,只保留年龄最大的那个
data = data.sort_values(by="age", ascending=False).drop_duplicates('name', inplace=False)
# data = data.drop_duplicates('name', inplace=False)
print(data)
顺利地解决了粉丝的问题。下面是他自己整理出来的,也一起分享给大家了。和上面的代码没太大区别,只是省去了参数名,硬要说就是默认参数省了和没省的区别。
import pandas as pd
data = [{'name': '小明', 'age': 18}, {'name': '小张', 'age': 20}, {'name': '小明', 'age': 20}, {'name': '小明', 'age': 38}]
data = pd.DataFrame(data)
# print(data)
# 删除名字重复的,只保留年龄最大的那个
data = data.sort_values('age', ascending=False).drop_duplicates(subset=['name'], keep='first')
print(data)
data = data.sort_values(by='age', ascending=False).drop_duplicates('name', inplace=False)
print(data)
大家好,我是皮皮。这篇文章主要盘点了一个Pandas
处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
最后感谢粉丝【谢峰】提问,感谢【甯同学】、【论草莓如何成为冻干莓】给出的思路和代码解析,感谢【dcpeng】、【此类生物】、【凡人不烦人】等人参与学习交流。