最近我们被客户要求撰写关于RFM、决策树模型的研究报告,包括一些图形和统计输出。
团队需要分析一个来自在线零售商的数据
该数据包含了78周的购买历史。该数据文件中的每条记录包括四个字段。客户的ID(从1到2357不等),交易日期,购买的书籍数量,以及价值。我们被要求建立一个模型来预测消费者每周的购买频率、书籍的购买单位和购买价值。
RFM是一个用于营销分析的模型,它通过购买模式或习惯来细分公司的消费者群体。特别是,它评估了客户的回顾性(他们多久前进行过一次购买)、频率(他们购买的频率)和价值(他们花多少钱)。
然后,通过测量和分析消费习惯,RFM被用来识别一个公司或组织的最佳客户,以改善低分客户并保持高分客户。
经常性、频率、价值(RFM)是一种营销分析工具,用于根据客户消费习惯的性质来确定公司的最佳客户。一个RFM分析通过对客户和顾客的三个类别进行打分来评估他们:他们最近有多大的购买行为,他们购买的频率,以及他们购买的规模。RFM模型为这三个类别中的每一个客户打出1-5分(从最差到最好)的分数。RFM分析帮助企业合理地预测哪些客户有可能再次购买他们的产品,有多少收入来自于新客户(相对于老客户),以及如何将偶尔购买的买家变成习惯购买的买家。
####计算用户最近一次的购买
R_table$R <- as.numeric(NOW - ParsedDate)
###计算用户的购买频率
aggregate(FUN=length) # Calculate F
###计算用户的购买金额
aggregate(FUN=sum) # Calculate M
得到每个用户的RFM值,利用RFM三个值的四分位数来对用户进行分类
得到对r值的线性拟合模型的结果,可以看到RFM三个分类值都与r值有显著的关系,Rsquare值达到了0.8以上,说明拟合效果较好。
得到对r值的线性拟合模型的结果,可以看到RFM三个分类值都与f值有显著的关系,Rsquare值达到早0.4左右,说明拟合效果一般。
得到对r值的线性拟合模型的结果,可以看到出了M分类值以外,FM的分类值都与f值有显著的关系,Rsquare值达到了0.4左右,说明拟合效果一般。
数据分享|R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
01
02
03
04
线性回归模型预测值和拟合值比较
预测拟合值的图中,红点表示实际样本点,可以看到F和M值的预测相对接近实际样本点,预测效果较好。然而,误差仍然比较大,因此尝试采用决策树模型进行预测。
ct <- rpart.control(xval=10, minsplit=20, cp=0.1)
rpart.plot(fitR, branch=1, branch.type=2, type=1,
border.col="blue", split.col="red",
从结果图来看,决策树对f值和m值的拟合程度更好。
从三个模型的结果里来看,rel error和xerror都较小,因此模型预测拟合效果较好。
因此,模型的整体效果相对线性模型得到了提升。
本文选自《R语言用RFM、决策树模型顾客购书行为的数据预测》。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有