前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >腾讯云大数据流计算 Oceanus 在 MySQL CDC Connector 的核心优化

腾讯云大数据流计算 Oceanus 在 MySQL CDC Connector 的核心优化

作者头像
腾讯云大数据
发布2022-12-18 09:40:08
1K0
发布2022-12-18 09:40:08
举报
文章被收录于专栏:腾讯云大数据

引言:Apache Flink 作为流计算引擎,需要持续从上游接收数据流,并向下游输出最新的计算结果。Connector 起到承上启下的作用:Source 负责与上游的 MQ、数据库等源表对接,Sink 则写入各类数据库、数仓、数据湖等目的表。因此,Connector 是 Flink 连接外部生态的桥梁,也是影响作业吞吐量的重要因素之一。

Flink CDC Connectors 作为 Flink 生态的当红明星,切切实实的抓住了实时数据同步(ETL)的痛点,因此广受欢迎。自从 2.0 新版发布以来,它通过并行化无锁算法、更多数据库支持、不阻塞快照等新特性,赢得了更多用户的青睐。

然而它相对来说还是比较新的项目,因此也有着各类大大小小的 Bug 和功能不全等问题。这里我们列举一些常见的问题和解决方案。

JobManager 分片策略优化 

减少 70% 内存占用

问题背景

旧版 Flink 的 Source 数据读取是完全由各个 TaskManager 独立完成的,彼此之间没有任何协调和通知机制。这带来了一些问题:每一种 Source 都需要自行实现数据分片和读取逻辑,重复代码多,功能耦合在一起;在繁忙时,快照锁的获取也较为困难,甚至可能出现长期阻塞的情况;流模式、批模式的逻辑不同,需要分别实现等等。

Flink 1.11 及之后的版本,提供了 FLIP-27 提案里描述的新版 Source API,它力求解决上述的各项问题,详情可阅读我们的 这篇文章。

这种新的 API 把分区发现和数据分片的任务由 TaskManager 的职责改到了 JobManager,因此又带来了一些问题:之前 JobManager 只负责全局调度工作,内存开销非常小。现在需要保存各种 Source Connector 的分片信息,因此对于数据量很大的源表,CPU 和内存占用会飙升,甚至出现 OOM(堆内存溢出)问题。

例如我们需要同步几十亿级别的数据表,每个 MySQL 数据分片 8192 条数据,那么内存里需要保存约数十万个 chunk 信息,这可能需要 GB 级的内存来存储。有的读者可能会问:那如果我们把分片改大,例如每个分片 10 万条数据行不行呢?这种做法固然会减少分片数,让 JobManager 大幅减轻负担,但是代价是 TaskManager 处理每个分片的数据量剧增,导致更容易 OOM,同样影响作业的稳定性。

方案描述

我们通过导出 MySQL CDC Connectors 在 JobManager 进程的内存占用,发现 SnapshotSplitAssigner 占用了大量的内存,它保存的是全量快照阶段的分片信息,而具体划分逻辑由 MySqlChunkSplitter 负责执行。

通过细致分析,我们发现它里面存储了很多冗余的信息,例如不必要每个分片都保存各类元数据信息。同时我们还发现,分片的划分不一定非要一次性完成,我们完全可以运行时动态计算 Split 信息,免去大量的内存占用开销。

顺着这个思路,我们完成了 JobManager 分片划分策略的优化。经过对比,在上述几十亿数据同步的场景下,JobManager 堆内存占用减少了约 70%,为客户大幅降本,也赢得了美誉。

同 MySQL 实例多库表连接复用 

大幅减少连接数

问题背景

开源版的 MySQL CDC Connector 在 SQL 模式下,每同步一张表,都需要建立一条完整的链路,这也代表着一个对上游数据库的 Binlog Reader,作业的运行图类似下图:

开源 Flink 未复用的运行图

虽然我们可以通过正则匹配的方式来一次同步多张 Schema 相同的表,但是实际场景下,往往每个 Table 的 Schema 都不同,而且可能分布在多个 Database 中,因此仍然需要很多连接。

如果我们有 10 个库,100 张不同 Schema 的表要同步,那么每个 Flink 作业都需要对上游数据库新建 1000 个 Binlog 连接,这会造成严重的性能问题,因此亟需优化。

方案描述

我们设计了一个通用的 Source 消费算子,它可以处理任意 Schema 的数据,而不仅限于单个表。当全量、增量阶段的 Debezium 数据流过时,会被它原样转发,同时加上所属的 database、schema、table 等元数据信息。然后在它的下游设计一个 Filter 算子,根据每个库、表的元数据做分发,最后通过一个 UDTF(Correlate)算子做解包,如下图:

Oceanus 连接复用后的运行图

由于市场上其他厂商也提供了类似的能力,我们通过性能测试和对比,性能(CPU、内存、吞吐量)和友商持平甚至稍优。因此也得到了很多客户的认可和采纳,大幅降低了对上游数据库的压力。

全量转增量 Binlog 追赶速度优化

问题背景

在同步超大数据量的 MySQL 表(上万个分片)时,我们还遇到了全量阶段结束后,有 1 小时以上的空档期,随后才进入完整的增量阶段。从监控数据上来看,这段时间完全没有任何数据输出,但是 Flink 作业运行一切正常,让用户非常困惑。

经过细致分析,我们发现这段“空档期”实际上是也是在消费 Binlog,只是这部分 Binlog 已经出现在之前的全量部分,因此都被丢弃了。

方案描述

我们对这个特殊阶段的 CPU 时间片进行采样,发现时间片主要耗费对每条 Binlog 数据,遍历所有分片,检查这条记录是否位于全量阶段结束之后。

既然瓶颈在这里,我们也对其算法做了优化,通过利用局部有序性的原理,采用二分的方式查找边界,将时间复杂度从 O(N) 优化到 O(logN),后续观察到,该阶段耗时减少了 80%.

增量数据同步性能优化

问题背景

当 MySQL CDC Source 进入纯增量阶段后,仍然可能会遇到性能瓶颈:由于 Binlog 读取是单线程的,如果遇到大表消费慢的场景,并不能简单通过扩容并行度来解决。然而我们也在实际场景中,遇到过较为严重的数据积压现象,这就要求我们进一步优化 Binlog 增量消费阶段的吞吐量。

同样地,通过性能剖析,我们发现增量阶段的性能瓶颈,主要集中在对 Binlog 位点的比较上。在开源的 Flink 版本中,每条 Binlog 数据都需要比较,非常消耗 CPU 资源。

方案描述

我们观察到,每个表只会经历一次全量同步过程,那么完全可以在进入增量阶段后,在内存中保持一个标志。每次 Binlog 到来时,通过对比这个标志,来判断是否进行位点比较。这样就可以大幅提升性能。

通过实际测试,性能最高可以提升到原来的 4 倍。我们已经将这个特性回馈到开源社区,新版的 CDC Connector 自带该优化。

总结与预告

本文从运行图优化、JobManager 内存优化、TaskManager CPU 执行效率优化等几个维度,讲解了腾讯云 Oceanus 对 MySQL CDC Connector 做的一些核心优化点。

当然,我们所做的优化远远不止这几个点,还包括但不限于对 CI Collation 的 VARCHAR 主键的数据表分片倾斜问题修复、整库同步(CDAS)语法支持、TDSQL-C HA 模式适配等等。

此外,我们在 ClickHouse、Elasticsearch 等常用 Sink 上也做了很多优化工作,后面会有更多文章来介绍,敬请期待!

关注腾讯云大数据公众号

邀您探索数据的无限可能

点击“阅读原文”,了解相关产品最新动态

↓↓↓

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-12-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯云大数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 问题背景
    • 方案描述
      • 方案描述
        • 问题背景
          • 方案描述
            • 问题背景
              • 方案描述
              相关产品与服务
              云数据库 SQL Server
              腾讯云数据库 SQL Server (TencentDB for SQL Server)是业界最常用的商用数据库之一,对基于 Windows 架构的应用程序具有完美的支持。TencentDB for SQL Server 拥有微软正版授权,可持续为用户提供最新的功能,避免未授权使用软件的风险。具有即开即用、稳定可靠、安全运行、弹性扩缩等特点。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档