Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >SP Module 8 Speech Recognition & Feature Engineering

SP Module 8 Speech Recognition & Feature Engineering

作者头像
杨丝儿
发布于 2022-11-24 09:17:35
发布于 2022-11-24 09:17:35
2310
举报
文章被收录于专栏:杨丝儿的小站杨丝儿的小站

Gaussian distributions in models

Classification model

Gaussian distribution of classification result of feature vector

Decision boundary

Cepstral Analysis, Mel-Filterbanks

We now start thinking about what a good representation of the acoustic signal should be, motivating the use Mel-Frequency Cepstral Coefficients (MFCCs).

Since the feature in a feature vector is correlated, if we want to use gaussian, we have to solve this correlation problem.

In TTS

In ASR, we can decompose the input further

The independent variable of a cepstral graph is called the quefrency. The quefrency is a measure of time, though not in the sense of a signal in the time domain. Then the first 12 value in cepstrum is our result feature vector, after feature engineering.

Then we can solve the correlation problem discussed in previous, by using MFCCs.

MFCCs

Overview of steps required to derive MFCCs, moving towards modelling MFCCs with Gaussians and Hidden Markov Models

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-11-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
LV.0
这个人很懒,什么都没有留下~
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档