前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Sklearn库计算TFIDF

Sklearn库计算TFIDF

作者头像
全栈程序员站长
发布2022-11-07 17:07:25
4020
发布2022-11-07 17:07:25
举报
文章被收录于专栏:全栈程序员必看

Sklearn库计算TFIDF

  • 贴代码
代码语言:javascript
复制
from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
# 定义函数
def TF_IDF(corpus):
    vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵
    transformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值
    x = vectorizer.fit_transform(corpus)
    tfidf=transformer.fit_transform(vectorizer.fit_transform(corpus))#第一个fit_transform是计算tf-idf,第二个fit_transform是将文本转为词频矩阵
    word=vectorizer.get_feature_names()#获取词袋模型中的所有词语
    word_location = vectorizer.vocabulary_  # 词的位置
    weight=tfidf.toarray()#tf-idf权重矩阵
    return weight,word_location,x.toarray()
代码语言:javascript
复制
# 调用函数
# 这里做分词,使用空格隔开
corpus = [
            '我 来到 北京 清华大学',
            '他 来到 了 中国',
            '小明 硕士 毕业 与 中国 科学院',
            '我 爱 北京 天安门'
           ]
weight,word_location,tf = TF_IDF(corpus)
print(weight)
print(word_location)
print(tf)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/183512.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月10日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Sklearn库计算TFIDF
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档