前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >生成pdf有的内容显示不出来_为什么ug程序生成导轨不显示

生成pdf有的内容显示不出来_为什么ug程序生成导轨不显示

作者头像
全栈程序员站长
发布2022-11-01 09:47:17
8550
发布2022-11-01 09:47:17
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

##TFRecord##   TensorFlow提供了TFRecord的格式来统一存储数据,TFRecord格式是一种将图像数据和标签放在一起的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储 等等。   TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)。我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocol buffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriter 写入到TFRecords文件。 从TFRecords文件中读取数据, 可以使用tf.TFRecordReader的tf.parse_single_example解析器。这个操作可以将Example协议内存块(protocol buffer)解析为Tensor。 ##Image to TFRecord##

首先我们使用TensorFlow提供的Flowers数据集做这个实验,数据集在我本地的路径为:

这是一个五分类的数据,以类别的形式组织数据,这非常符合我们自己组织数据集的习惯。其中一个分类中大概有700张左右的图片:

现在我们就把上面的数据制作出TFRecord,在这里需要说明下,TFRecord的生成要注意两点: 1.很多时候,我们的图片尺寸并不是统一的,所以在生成的TFRecord中需要包含图像的width和height这两个信息,这样在解析图片的时候,我们才能把二进制的数据重新reshape成图片; 2.TensorFlow官方的建议是一个TFRecord中最好图片的数量为1000张左右,这个很好理解,如果我们有上万张图片,却只打成一个包,这样是很不利于多线程读取的。所以我们需要根据图像数据自动去选择到底打包几个TFRecord出来。

我们可以用下面的代码实现这两个目的:

代码语言:javascript
复制
import os 
import tensorflow as tf 
from PIL import Image  

#图片路径
cwd = 'F:\\flowersdata\\trainimages\\'
#文件路径
filepath = 'F:\\flowersdata\\tfrecord\\'
#存放图片个数
bestnum = 1000
#第几个图片
num = 0
#第几个TFRecord文件
recordfilenum = 0
#类别
classes=['daisy',
         'dandelion',
         'roses',
         'sunflowers',
         'tulips']
#tfrecords格式文件名
ftrecordfilename = ("traindata.tfrecords-%.3d" % recordfilenum)
writer= tf.python_io.TFRecordWriter(filepath+ftrecordfilename)
#类别和路径
for index,name in enumerate(classes):
    print(index)
    print(name)
    class_path=cwd+name+'\\'
    for img_name in os.listdir(class_path): 
        num=num+1
        if num>bestnum:
          num = 1
          recordfilenum = recordfilenum + 1
          #tfrecords格式文件名
          ftrecordfilename = ("traindata.tfrecords-%.3d" % recordfilenum)
          writer= tf.python_io.TFRecordWriter(filepath+ftrecordfilename)
        #print('路径',class_path)
        #print('第几个图片:',num)
        #print('文件的个数',recordfilenum)
        #print('图片名:',img_name)
        
        img_path = class_path+img_name #每一个图片的地址
        img=Image.open(img_path,'r')
        size = img.size
        print(size[1],size[0])
        print(size)
        #print(img.mode)
        img_raw=img.tobytes()#将图片转化为二进制格式
        example = tf.train.Example(
             features=tf.train.Features(feature={
            'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
            'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
            'img_width':tf.train.Feature(int64_list=tf.train.Int64List(value=[size[0]])),
            'img_height':tf.train.Feature(int64_list=tf.train.Int64List(value=[size[1]]))
        })) 
        writer.write(example.SerializeToString())  #序列化为字符串
writer.close()

在上面的代码中,我们规定了一个TFRecord中只放1000张图:

代码语言:javascript
复制
bestnum = 1000

并且将一张图的4个信息打包到TFRecord中,分别是:

代码语言:javascript
复制
example = tf.train.Example(
             features=tf.train.Features(feature={
            'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
            'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
            'img_width':tf.train.Feature(int64_list=tf.train.Int64List(value=[size[0]])),
            'img_height':tf.train.Feature(int64_list=tf.train.Int64List(value=[size[1]]))
        })) 

##TFRecord to Image## 在上面我们打包了四个TFRecord文件,下面我们把这些数据读取并显示出来,看看制作的效果,这个过程很大一部分是和TensorFlow组织batch是一样的了。

代码语言:javascript
复制
import tensorflow as tf 
from PIL import Image  
import matplotlib.pyplot as plt

#写入图片路径
swd = 'F:\\flowersdata\\show\\'
#TFRecord文件路径
data_path = 'F:\\flowersdata\\tfrecord\\traindata.tfrecords-003'
# 获取文件名列表
data_files = tf.gfile.Glob(data_path)
print(data_files)
# 文件名列表生成器

filename_queue = tf.train.string_input_producer(data_files,shuffle=True) 
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)   #返回文件名和文件
features = tf.parse_single_example(serialized_example,
                                   features={
                                       'label': tf.FixedLenFeature([], tf.int64),
                                       'img_raw' : tf.FixedLenFeature([], tf.string),
                                       'img_width': tf.FixedLenFeature([], tf.int64),
                                       'img_height': tf.FixedLenFeature([], tf.int64),
                                   })  #取出包含image和label的feature对象
#tf.decode_raw可以将字符串解析成图像对应的像素数组
image = tf.decode_raw(features['img_raw'], tf.uint8)
height = tf.cast(features['img_height'],tf.int32)
width = tf.cast(features['img_width'],tf.int32)
label = tf.cast(features['label'], tf.int32)
channel = 3
image = tf.reshape(image, [height,width,channel])


with tf.Session() as sess: #开始一个会话
    init_op = tf.initialize_all_variables()
    sess.run(init_op)
    #启动多线程
    coord=tf.train.Coordinator()
    threads= tf.train.start_queue_runners(coord=coord)
    for i in range(15):
        #image_down = np.asarray(image_down.eval(), dtype='uint8')
        plt.imshow(image.eval())
        plt.show()
        single,l = sess.run([image,label])#在会话中取出image和label
        img=Image.fromarray(single, 'RGB')#这里Image是之前提到的
        img.save(swd+str(i)+'_''Label_'+str(l)+'.jpg')#存下图片
        #print(single,l)
    coord.request_stop()
    coord.join(threads)

注意: 1.我们在使用reshape去将二进制数据重新变成图片的时候,用的就是之前打包进去的width和height,否则程序会出错;

代码语言:javascript
复制
image = tf.reshape(image, [height,width,channel])

2.在图片存储时的命名方式为:mun_Label_calss id

3.代码也可以实时show出当前的图片:

完整代码也可以点击这里下载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/203593.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月23日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档