前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >李宏毅《机器学习》丨2. Regression(回归)

李宏毅《机器学习》丨2. Regression(回归)

作者头像
AXYZdong
发布2022-08-30 14:39:59
3820
发布2022-08-30 14:39:59
举报
文章被收录于专栏:想到什么就分享

Author:AXYZdong 李宏毅《机器学习》系列 参考视频地址:https://www.bilibili.com/video/BV1Ht411g7Ef 参考文档:DataWhale文档

文章目录

一、回归(Regression)

应用举例

  • 股市预测(Stock market forecast)
  • 自动驾驶(Self-driving Car)
  • 商品推荐(Recommendation)
  • Pokemon精灵攻击力预测(Combat Power of a pokemon):

二、模型步骤

2.1 模型假设 - 线性模型

2.2 模型评估 - 损失函数

L(f)=\sum_{n=1}^{10}(\hat{y}^n-f(x_{cp}^n))^2\\[2ex] \to L(w,b)=\sum_{n=1}^{10}(\hat{y}^n-(b+w\cdot x_{cp}^n)^2

▲ 损失函数(Loss Function)

▲ w 和 b 在二维坐标中展示

2.3 模型优化 - 梯度下降

▲ 定义f*

步骤2:计算微分,也就是当前的斜率,根据斜率来判定移动的方向

  • 大于0向右移动(增加ww)
  • 小于0向左移动(减少ww)

步骤3:根据学习率移动

重复步骤2和步骤3,直到找到最低点

▲ 梯度下降过程

▲ 两个参数偏微分过程

梯度下降算法在现实世界中面临的挑战

  • 问题1:当前最优(Stuck at local minima)
  • 问题2:等于0(Stuck at saddle point)
  • 问题3:趋近于0(Very slow at the plateau)

▲ 梯度下降面临的问题

在线性模型里面都是一个碗的形状(山谷形状),梯度下降基本上都能找到最优点,但是再其他更复杂的模型里面,就会遇到 问题2 和 问题3 。

验证模型好坏

使用训练集和测试集的平均误差来验证模型的好坏。

三、过拟合(Overfitting)

在简单的模型基础上,可以进行优化,选择更复杂的模型(一元N次线性模型),或者说使用多项式来拟合。

如果我们选择较高次方的模型,在训练集上面表现更为优秀的模型,在测试集上效果可能反而变差了。这就是模型在训练集上过拟合的问题。

▲ 过拟合(Overfitting)的问题

四、正则化(Regularization)

对于更多特征,但是权重

w

可能会使某些特征权值过高,仍旧导致overfitting,可以加入正则化。

损失函数:L=\sum_{n}(\hat{y}^n-(b+\sum w_ix_i)^2\\[2ex] 引入正则化项 \to L=\sum_{n}(\hat{y}^n-(b+\sum w_ix_i)^2+\lambda\sum (w_i)^2 \\[2ex] \lambda\sum (w_i)^2:正则化项。

▲ 正则化(Regularization)

▲调节 λ 获得最好的模型

五、总结

Datawhale组队学习,李宏毅《机器学习》Task2. Regression(回归),主要包括回归的定义、创建模型的步骤、如何优化模型、优化模型过程中可能出现的问题以及使用正则化来解决过拟合的问题。

—— END ——

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-06-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文章目录
  • 一、回归(Regression)
  • 二、模型步骤
    • 2.1 模型假设 - 线性模型
      • 2.2 模型评估 - 损失函数
        • 2.3 模型优化 - 梯度下降
        • 三、过拟合(Overfitting)
        • 四、正则化(Regularization)
        • 五、总结
        相关产品与服务
        腾讯云 TI 平台
        腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档